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ABSTRACT 
 
As infrastructure develops and adoption of smart water meters increases, new techniques are needed to 
validate and learn from the large datasets they produce. Patterns of leading digits (i.e., first non-zero digits, 
1 through 9) can support this task. This study examines leading digits in hourly smart meter readings from 
a western U.S. water utility with over 5,000 customer connections. Benford analysis, power law analysis, 
and leading-digit-frequency analysis all indicate that the readings tend toward values that start with 1. The 
findings suggest that readings from smart water meters—and, by extension, water use by individual 
customers—could be expected to follow a particular nonuniform pattern of leading digits and that deviation 
from the pattern may indicate data errors or abnormal water use. Applications are suggested for validating 
water use data, comparing multiple datasets, checking projections, and assessing meter performance. 
Additional work is needed to further explore the beneficial uses of leading-digit patterns and other data 
signatures in water use data from diverse datasets. 
 
INTRODUCTION 
 
In an era of big data and sustainability, water use data are more plentiful and important than ever. Decision 
makers need accurate data to maintain the vital service of providing clean, reliable water. The data must 
be fine enough in both space and time to characterize individual water use profiles, justify water 
conservation measures, prioritize leak detection, and inform planning activities. 
 
The Promise of Smart Meters 
 
As part of advanced metering infrastructure (AMI) that is now becoming mainstream, smart water meters 
that record customer water usage at hourly (or smaller) time scales promise to help solve these problems. 
An estimated 17% of North American water utilities use smart meters and the share is growing (AWWA 
2018; Russell 2019). The resulting large datasets may be mined for insights into water use habits of 
customers and the planning, design, and operation of the water utility, with two-way communication 
between both parties. 
 
One driver of smart meter deployment is the desire for better data on the timing and type of end use. The 
data help improve meter accuracy (Boyle et al. 2013; Beal and Flynn 2015), models and projections (Beal 
and Stewart 2014; Gurung et al. 2014; Romano and Kapelan 2014; Creaco et al. 2016; Candelieri et al. 
2017; Pesantez et al. 2020; Xenochristou et al. 2020; Shafiee et al. 2020), and dynamic pricing (Rougé et 
al. 2018).  
 
When combined with customer feedback, the high-resolution data can help reduce water use and alert 
users and operators of problems. Davies et al. (2014) and Sønderlund et al. (2016) both reported 
measurable reductions in water use when combining smart meters and near-real-time consumption 
feedback. Others have shown how the data can help customize water management activities (Cardell-
Oliver et al. 2016; Cahn et al. 2020). During a contamination incident, one Utah water utility examined smart 
meter data from the affected area to determine which residents had flushed their plumbing; water utility 
staff then visited and helped those who had not (Hansen, Allen & Luce 2020).  
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In addition to security, hardware, software, logistics, funding, and politics (Mutchek and Williams 2014; 
Gurung et al. 2017; Casteletti et al. 2018; Monks et al. 2019), one of the most prominent challenges for 
continued smart meter adoption is data management (Cominola et al. 2015, 2018; Sowby et al. 2019). 
Specifically, Savić et al. (2014) stated that the main scientific challenges “are the management and 
extraction of useful information from vast amounts of high-resolution consumption data” and turning them 
into decision-support tools. Some examples include algorithms to detect meter fraud by identifying trends 
of gradually decreasing consumption, suddenly decreased consumption, and/or abnormally low 
consumption in the meter profiles (Monedero et al. 2016) and distinctive time-series patterns that indicate 
leakage, backflow, pump failures, and pipe bursts (Britton et al. 2013; Mix et al. 2020; Wu and Liu 2020). 
Additionally, Meng et al. (2017) reports that the perception of smart infrastructure by water management 
professionals, particularly as it relates to performance, user-friendliness, and cost effectiveness, remains a 
challenge. 
 
Despite the challenges, smart water meters and their data continue to drive advancements in hydraulic 
modeling, leak detection, water conservation, and customer service (Russell 2019), “[ushering] in a new 
era in design, operation, and management of urban water infrastructure” (Rasekh et al. 2016). 
 
The Value of Leading-Digit Patterns 
 
One area of smart meter analysis yet to be explored is the pattern of leading digits (i.e., first non-zero digits, 
1 through 9) in the readings and how these patterns might be exploited. Leading-digit patterns have been 
found in diverse datasets, including populations (Sandron and Hayford 2002), financial transactions (Nigrini 
and Mittermaier 1997), integer sequences (Washington 1981), and streamflow (Nigrini and Miller 2007). 
When expected leading-digit patterns are established, deviation from the pattern can inidcate problems. In 
accounting, leading-digit analysis is used to detect fraud since fabricated or randomly generated data do 
not follow a natural pattern (Durtschi et al. 2004; Nigrini and Mittermaier 1997). Sambridge et al. (2010) 
applied leading-digit analysis to validate observations of exoplanet masses, seismic wave speeds, and 
global temperature anomalies. Sowby (2018) found a leading-digit pattern in annual potable water use data 
aggregated by U.S. public water suppliers, counties, and states and suggested that the pattern could help 
validate water use observations. The study recommended examination of patterns in higher-resolution data 
and water end-uses. Assigned numbers (e.g., phone numbers, identification numbers, and prices) and 
values with limited ranges do not follow the same patterns. 
 
The most well-known and well-documented leading-digit pattern is Benford’s law, in which most numbers 
start with 1, regardless of the decimal place (Fig. 1). Benford (1938), like Newcomb (1881) before him, 
noted how the first pages of logarithm books were more worn out than the last, suggesting that users were 
looking up the logarithms of numbers starting with low first digits more frequently than those with high first 
digits.  
 
Benford theorized that in a dataset of values spanning several orders of magnitude in any consistent units, 
a leading digit d (where d = 1, 2, … 9) would occur with frequency f according to 
 

𝑓𝑓(𝑑𝑑) = log10 �1 +
1
𝑑𝑑
� (1) 

resulting in the distribution shown in Fig. 1. While similar expressions exist for second and third digits, the 
distribution of first digits is the most distinctive.  
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In data that follow Benford’s law, the digits are not uniformly distributed 1/9 or 11.1% of the time as one 
might expect. Instead, 1 appears as the leading digit about 30% of the time and the frequency decreases 
thereafter for digits 2 through 9. This is apparent on any logarithmic scale, where the distance, on paper, 
between 1 and 2 is much greater than that between 8 and 9. Benford’s law applies best when the data 
range covers an integer order of magnitude; otherwise, the pattern may deviate in the tails. In such cases 
the data may be curtailed so the log range becomes a whole number and Benford’s law can be observed. 
 

 
Fig. 1. Frequency of Leading Digits according to Benford’s Law 

 
 
Other patterns of leading digits have also been observed, such as power law distributions, which are even 
more extreme than Benford’s law. Nigrini and Miller (2007) analyzed hydrologic data and found that 
streamflow measurements follow Benford’s law, but that lake areas follow a steep power law. 
 
In a power law distribution, a leading digit d (where d = 1, 2, … 9) would occur with frequency f according 
to 
 

𝑓𝑓(𝑑𝑑) =
𝑑𝑑−𝑚𝑚 �1 − �𝑑𝑑 + 1

𝑑𝑑 �
−𝑚𝑚
�

1 − 10−𝑚𝑚
 

 

(2) 

where m is determined from analysis of the observations by Newman’s (2005) method: 
 

𝑚𝑚 = 𝑛𝑛 �� ln �
𝑥𝑥𝑖𝑖
𝑥𝑥min

�
𝑛𝑛

𝑖𝑖=1

�
−1

 

 

(3) 

Where n is the sample size, xi (where i = 1, 2, … n) are the observations, and xmin is the minimum 
observation. Note in Eq. (2) than when m = 0, the equation simplifies to Benford’s law in Eq. (1), after 
applying L’Hospital’s Rule to handle indeterminacy (Nigrini and Miller 2007). When m > 0, the pattern is 
steeper than Benford’s law and favors low leading digits even more. When −1 < m < 0, the pattern is less 
steep than Benford’s law but still favors low leading digits. When m = −1, pattern of leading digits is uniform 
(flat). When m < −1, the pattern favors high leading digits. 
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Research Objectives 
 
Do water use data exhibit any distinctive leading-digit patterns? If so, how might such patterns be 
beneficially used? This study is the first to examine leading-digit patterns from smart water meters and 
intends to provide a valuable technique for extracting insights from these new, large datasets. Using a 
sample dataset, the authors identify patterns of the first leading digit in the meter reads. Potential 
applications to data validation, data quality monitoring, water use projections, and meter performance are 
then recommended.  
 
DATA AND METHODS 
 
Data Source and Selection 
 
Xylem Inc., a large American water technology provider, provided anonymized smart meter data from a 
Western U.S. water utility. The original dataset consists of hourly reads for 5,765 meters from 2016 to 2018. 
 
For this study, the dataset was limited to the year 2018 (for reasons of data quantity), to nonzero readings 
(since 0 cannot be a leading digit), and to meters with resolution of 3.785 L (1 gallon) (the finest resolution 
of the provided data, so as to provide consistent resolution and avoid rounding). The resulting dataset 
contains 13,836,912 observations of meter ID, timestamp, and readings across 5,243 unique meters. The 
data range from 1 to 10,000,000 gallons (3.78 L to 37,800,000 L), so the log range is equal to an integer 
(7) and no curtailing was necessary. The statistical tests described below were carried out for each meter 
each month (a “meter-month”). The sample size in each meter-month ranged from 0 (no nonzero reads) to 
744 (24 hours over 31 days). Meter-months with a sample size of zero were excluded. Of 62,916 possible 
meter-months (5,243 meters across 12 months), 58,234 remained in the final analysis. 
 
Units 
 
The native meter readings, as a product of both meter hardware and software, were in discrete gallons and 
remained so throughout the analysis. Leading-digit patterns generally persist regardless of the units, as 
long as the units are consistent and the data are not dominated by a few values (Hill 1995b). However, this 
particular dataset consists mostly of small values that would bias the leading-digit distribution if converted. 
To avoid such bias, the underlying data were not converted to SI units. 
 
Statistical Tests 
 
Benford’s law. Conformance to Benford’s law was evaluated with the Kolmogorov–Smirnov (KS) test 
(Massey 1951). The test is a common choice for Benford analysis, including water-related applications by 
Sowby (2018) and Nigrini and Miller (2007). The null hypothesis is that the sample conforms to Benford’s 
law, i.e., that the cumulative distribution of leading digits in the empirical dataset is the same as that in 
Benford’s law. The null hypothesis is rejected if the KS test statistic exceeds the critical value at a 
significance level of α = 0.05, indicating a statistically significant departure from Benford’s law. The critical 
value decreases with sample size, effectively tolerating less departure in larger samples. The test was 
performed for the hourly reads in each meter-month, as well as for the entire dataset of hourly reads. Since 
the number of reads differs each month (especially after filtering the data as described above), it is important 
that any statistical test consider the sample size, which the KS test does.  
 
Steep power law. A power law distribution was evaluated by computing the power law exponent as 
described by Newman (2005) and Nigrini and Miller (2007) for each meter-month’s hourly reads, as well as 
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for the entire dataset of hourly reads. Readings were determined to follow a steep power law if and only if 
m > 0 as described in (3) above (i.e., a pattern steeper than Benford’s law). 
 
Most frequent leading digit. Regardless of conformance to Benford’s law or a power law, it is also of interest 
simply to know what the most frequent leading digit is in any particular dataset. For this reason, a leading-
digit-frequency analysis was performed on hourly reads from each meter-month and the most frequent 
leading digit was reported. Of particular interest is what proportion of meter-months have 1 as the most 
frequent leading digit from the hourly reads. 
 
Because of differences in statistical significance in each test, it is possible for readings to satisfy multiple 
patterns (e.g., Benford’s law and power law). 
 
Data Processing 
 
The data were processed with R (R Core Team 2019), combining published R packages with custom scripts 
and loops coded specifically to address the format of the provided data.  
 
RESULTS AND DISCUSSION 
 
According to the KS tests, hourly reads in 16,668 meter-months (28.6%) followed Benford’s law. According 
to the power law tests, hourly reads in all 58,234 meter-months (100.0%) followed a steep power law. In 
57,202 meter-months (98.3%), 1 was the most frequent leading digit in the hourly reads. Some meter-
months passed multiple tests. See Table 1. Each of the three tests indicates that the smart meter readings 
in the sample dataset tend toward values beginning with 1. 
 

Table 1. Leading-Digit Patterns from Sample Smart Water Meter Dataset 
 

Leading-digit pattern Number of meter-months satisfying pattern a 

Benford’s law 16,668 (28.6%) 
Steep power law (leading with 1) 58,234 (100.0%) 
1 is most frequent leading digit 57,202 (98.3%) 

a. Of total 58,234 meter-months 
 
The findings for this particular dataset suggest that readings from smart water meters—and, by extension, 
water use by individual customers—could be expected to follow a particular nonuniform pattern of leading 
digits, whether Benford’s law, a steep power law, or simply the pattern where 1 is the most frequent leading 
digit (regardless of the frequencies of subsequent digits). The results accord with those of Sowby (2018) 
for coarser water use data and prompt further exploration of other datasets and how this pattern might be 
exploited. 
 
Taken as a whole, the dataset does not conform to Benford’s law. The sample size (over 13,800,000) is so 
great that the tolerance for departure from the Benford distribution (the critical KS value) is very small and 
the null hypothesis of conformance must be rejected, even though data in individual meter-months (in 
smaller samples) still fit the pattern. The entire dataset more closely resembles a steep power law. See Fig. 
2. The distribution is clearly steeper than Benford’s law. The computed best-fit power law exponent [Eq. 
(3)] for the dataset is m = 0.43, which is much greater than Benford’s law, in which m = 0. In other words, 
the smart meter data show even more favor toward 1 as the leading digit. 
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Fig. 2. Leading-Digit Frequencies for Entire Sample Dataset 

 
APPLICATIONS 
 
The distinctive pattern of leading digits among smart water meter readings suggests several useful 
applications and possible future regulatory implications to be explored in future work. A few examples are 
given here. 
 
Validating Water Use Data 
 
To complement existing validation methods, water use data could be screened by a leading-digit analysis 
before being finalized. As in accounting (Durtschi et al. 2004; Nigrini and Mittermaier 1997), water use data 
samples that deviate from the expected pattern could be flagged for further attention since they may be 
incomplete, be rounded too much, contain errors, or indicate abnormal water use (Sowby 2018; Nigrini and 
Miller 2007). Such functions could be programmed as quality control measures into smart meter software 
backends and water utility databases, or stand alone for ad-hoc processing. Where most water uses are 
measured only once and cannot otherwise be corroborated, leading-digit analysis can indicate general 
conformance or nonconformance to expected patterns. Leading-digit analysis could be particularly useful 
as data are aggregated to larger and larger scales, as in state and federal reporting: each receiving party 
could examine leading-digit patterns in the submitted datasets before accepting them. In nonconforming 
datasets, investigation may focus on the subsets of leading digits that are particularly under- or 
overrepresented. 
 
For example, the Utah Division of Water Resources publishes data on non-potable water use for irrigation 
in municipal settings. Four years of annual totals, 2015–2018, were provided for several hundred water 
suppliers. In 2015, 2016, and 2018, the data conform to Benford’s law by the KS test, but in 2017 they do 
not, showing unusually high frequencies of leading digits 6, 7, and 8. This might prompt a reevaluation of 
the 2017 data to uncover errors, unusual water use, or other reasons for departure from the expected 
pattern. 
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Comparing Multiple Datasets 
 
Leading-digit patterns may also help one compare the accuracy of two or more datasets on the same water 
uses and inform a choice about which dataset to use. Sowby (2018) illustrated such a case where, given 
two datasets on public water suppliers’ use, the dataset known to be more accurate also more closely 
followed Benford’s law. The same may be true of smart meters and individual water users. A related 
application is comparing the accuracy of water use datasets over time (e.g., years), where increasing 
conformance to a predictable pattern could also indicate increasing data accuracy. 
 
Continuing the example from the Utah Division of Water Resources above, the 2018 data show the best 
overall fit to Benford’s law (smallest KS value relative to critical value) of the four years in question. It was 
in this same year that the Division improved its analysis methods after recommendations from a third-party 
audit (Bowen Collins & Associates and Hansen, Allen & Luce 2018). The better fit is one indicator that the 
improvements were effective. Such a test may belong among ongoing efforts to monitor data quality. 
 
Checking Models and Projections 
 
If historic water use for a certain water group follows leading-digit patterns, so should future water use. 
Water use models and projections (such as those by Romano and Kapelan [2017] and Candelieri [2017]) 
therefore could undergo leading-digit analysis to see if the results are reasonable (Hill 1995a). When results 
do not follow the expected pattern, the assumptions, methods, and base data may be revisited. 
 
For example, Hejazi et al. (2014, Table 6) published projections of 2050 and 2095 global water withdrawals 
for 32 economic sectors and 6 scenarios (384 values total). The data conform to Benford’s law by the KS 
test. The finding of a leading-pattern in these water use projections is consistent with this research and with 
Sowby (2018). 
 
Assessing Meter Performance 
 
Water meter performance can deteriorate over many years as the components wear out and the calibration 
wanders. Meters are also subject to accidental damage and deliberate tampering (meter fraud) that affect 
the readings. Such changes may affect the leading-digit patterns. Similar to what Monedero et al. (2016) 
did for actual water usage, a time series of test statistics on leading digits (such as the KS test statistic) 
might show trends of decreasing performance or permanent changes at the meter that prompt further 
investigation. The effect of meter wear on leading-digit patterns is not known, so this is an area for further 
research. Many years of smart meter records, which were not immediately available to the authors, may be 
necessary to determine if such analysis is useful. 
 
LIMITATIONS 
 
One of the main limitations in this study, as well as in future applications, is the computational demand of 
assessing leading-digit patterns in large water use datasets. Here, the analysis required several hours of 
custom programming and processing on a desktop computer. Other datasets are even larger, with more 
meters and more frequent reads. If every meter must be analyzed, then new computational methods, 
optimized algorithms, and more efficient data formats are needed to streamline the process and make 
continued analysis more efficient, as others have already noted (Savić et al. 2014; Cominola et al. 2015). 
Otherwise, random sampling might be more practical. 
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It is possible that the leading-digit patterns found here are specific to this water utility; other sites with other 
water-use profiles due to land use, climate, pricing, and demographics may exhibit different patterns. While 
Benford’s law is expected to apply whenever the above criteria are met, these patterns need to be tested 
for more datasets and sites to reach a general conclusion that individual water use follows these patterns.  
 
The patterns discovered in this study may be a product of the particular meters used. In the dataset 
examined here, 1 is the most frequent leading digit among reads in gallons, and 3.785 L (1 gallon) is the 
resolution of the selected meters. This may or may not be coincidence. However, 37.85 L (10 gallons), not 
3.785 L (1 gallon), is not the most frequent reading, so direct correlation with the resolution of 3.785 L (1 
gallon) can be ruled out. Still, this prompts questions about relationships between meter brands, hardware, 
resolution, and frequency and the resulting leading-digit patterns.  
 
As in any leading-digit analysis, zeros must always be excluded since 0 is not a non-zero leading digit (0 is 
never a significant leading digit). Because of low discrete volumetric resolution and/or intervals with little or 
no water use, zero most often indicates “no activity.” As such, many smart meter readings may be zero, so 
large portions of the original data may not qualify for analysis. If zeros (and other actual values) are to be 
analyzed, other methods must be employed. In future metering technologies, “no activity” might be more 
accurately recorded as a null value instead of a zero. 
 
CONCLUSION 
 
This study examined hourly readings from over 5,000 smart water meters in a 12-month period. Benford 
analysis, power law analysis, and lead-digit-frequency analysis all indicated the readings tend toward 
values that start with 1. The findings suggest that readings from smart water meters—and, by extension, 
individual customer water use—might be expected to follow a particular nonuniform pattern of leading digits 
and that deviation from the pattern may indicate data errors or abnormal water use. As the implementation 
of smart water meters and related technologies grows, leading-digit analysis, where appropriate, could 
complement existing methods to enhance the insights one can extract from these large datasets. 
Applications are suggested for validating water use data, comparing multiple datasets, checking 
projections, and assessing meter performance. Further work should improve computational ability and 
explore leading-digit patterns from meters in different geographic locations and from meters of different 
resolution. 
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