

Energy intensity of water delivered

Facility Metric

Energy intensity of water processed

Cost Metric

Average price of energy

Equipment Metric

Energy intensity of water delivered

Facility Metric

Energy intensity of water processed

Cost Metric

Average price of energy

Equipment Metric

Definition

Ratio of output to input (percentage)

"How much of this equipment's energy

input is useful?"

Range 0%–100%

High value desirable

How to Calculate

- Q = Flow rate (gpm)
- h = Total dynamic head (ft)
- P = Power draw (kW)
 - SCADA
 - Multimeter
 - Trained electrician

$$\eta = \frac{Qh}{5280P}$$

Example: Performing as Expected?

- Design: 79% wire-to-water efficiency
 - 84% pump efficiency
 - 94% motor efficiency
- Actual:
 - 1,000 gpm
 - -210 ft TDH
 - -75 kW

$$\eta = \frac{Qh}{5280P}$$

$$\eta = \frac{(1000)(210)}{5280(75)}$$

$$\eta = 53\%$$

Limitations

- Need instantaneous measurements
- Only describes equipment for given conditions
- Cannot compare facilities
- Does not indicate necessity of energy use

Energy intensity of water delivered

Facility Metric

Energy intensity of water processed

Cost Metric

Average price of energy

Equipment Metric

Definition

- Ratio of energy to water volume (kWh/MG)
- "How much energy does it take to process a unit of water at this facility?"
- Range 0–huge (20,000 kWh/MG)
- Low value is desirable

How to Calculate

- E_F = Energy used at facility (kWh)
- V_F = Water volume processed at facility (MG)
- Over same period of time

$$Y_F = \frac{E_F}{V_F}$$

Example

Which water well will want what watts when working?

Well 1 750,000 kWh 300 MG

Well 2 345,000 kWh 230 MG

Well 3 252,000 kWh 120 MG

Example: Jordan Valley Water

Limitations

- Billing period discrepancies (monthly vs. daily data)
- Changes over time
- Includes non-water electric loads
- Does not indicate whether equipment is efficient

System Metric Energy intensity of water delivered

Facility Metric

Energy intensity of water processed

Cost Metric
Average price of energy

Equipment Metric

Definition

- Ratio of system-wide energy use to volume of water delivered (kWh/MG)
- "How much energy does the system take to deliver one unit of water to the end-user?"
- Range 0–15,000 kWh/MG
- Low value desirable

Sowby, Robert B., and Burian, Steven J., "Survey of Energy Requirements for Public Water Supply in the United States," *Journal AWWA*, July 2017

How to Calculate

- E_S = Total energy used in system (kWh)
- V_D = Total water volume **delivered** (MG)
- Over same period of time

$$Y_S = \frac{E_S}{V_D}$$

Example: Parker Water District

Limitations

- Difficult to compare systems
- Wide range of values
- Blurs differences within system

Energy intensity of water delivered

Facility Metric

Energy intensity of water processed

Cost Metric
Average price of energy

Equipment Metric

Definition

- Ratio of energy cost to energy used (\$/kWh)
- "How much does every unit of energy cost after including all the other fees?"
- Range \$0.03/kWh—\$0.30/kWh
- Low value is desirable

How to Calculate

- Total energy cost (\$)
- Total energy use (kWh)
- Compute at facility or system
- Apply to energy intensity to get costs

$$A = \frac{Total \ Energy \ Cost \ (\$)}{Total \ Energy \ Use \ (kWh)}$$

Example: WTP

- Switched one treatment train to off-peak operation and reduced the number of simultaneously running finished water pumps
- Before
 - 390,000 kWh
 - -\$31,200
- After
 - 485,000 kWh
 - -\$34,000

$$Before = \frac{\$31,200}{390,000 \text{ kWh}} = \$0.08/\text{kWh}$$

$$After = \frac{\$34,000}{485,000 \text{ kWh}} = \$0.07/\text{kWh}$$

Example: Mountain Regional Water

Data courtesy of Doug Evans, Mountain Regional Water District

Limitations

- Changes to rate schedules
- Does not indicate necessity of energy use

Energy intensity of water delivered

Facility Metric

Energy intensity of water processed

Cost Metric

Average price of energy

Equipment Metric

