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ABSTRACT 

 
Public water systems face escalating energy requirements due to scarcer water 

supplies, stricter water quality standards, and population growth. As the challenges of 

managing finite water and energy resources continue to grow, new data, analyses, and 

models are needed to help water systems manage their energy use and operate more 

sustainably. This work offers three original contributions: 1) the discovery of annual, 

utility-scale energy intensities for public water supply from a panel survey of over 100 

U.S. water utilities; 2) an empirical statistical model that accurately predicts a water 

system’s energy use as a function of a few accessible variables and lends itself to fairer 

energy benchmarking; and 3) the development of a high-resolution method to model 

energy use within a water distribution network to inform energy management decisions at 

multiple scales. The survey showed an average water system energy intensity of 1,809 

kilowatt-hours per million gallons (kWh/MG) but with substantial spread from 250 

kWh/MG to 11,500 kWh/MG and with interannual changes up to 70%. These geographic 

and temporal variations should be considered in future work. The survey confirmed that a 

lack of adequate data is one of the greatest barriers to understanding energy-for-water 

demands. In the statistical model, the most important factors influencing energy use were 

found to be water system size, water source type, precipitation, and air temperature. By 

considering such internal and external variables, the model overcomes much of the 

difficulty in equitable energy benchmarking. The model is more accurate than those 

 



developed previously and uses more-accessible variables to estimate energy use, features 

that are useful when actual observations are unavailable. The technique for modeling 

energy intensities within a water system, built on extended-period hydraulic modeling, 

provided specific and actionable energy management insights. A case study with a real 

water system illuminated energy inefficiencies, and their solutions were validated 

through actual energy savings. Where water and energy interactions are complex, the 

method is a valuable analysis tool. Overall, the development of strong datasets, empirical 

relationships, and modeling techniques helps advance sustainable water supply from an 

energy perspective, with value to both researchers and practitioners.  
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We shall not cease from exploration 
And the end of all our exploring 

Will be to arrive where we started 
And know the place for the first time. 

 
—T. S. Eliot, “Little Gidding” 
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PREFACE 

 
 In 2014 two events collided to launch me on my journey into the water–energy 

nexus. One was taking an online course entitled “Energy Technology and Policy.” A 

recent MIT graduate, I was following MIT and Harvard’s new massive open online 

course (MOOC) venture, edX, and wanted to try a course. The course, taught by Dr. 

Michael Webber at the University of Texas at Austin, was one of the most popular and 

seemed the most relevant to my civil engineering field. A water resources engineer by 

education and profession, I enjoyed the course and found the “Energy and Water” unit 

particularly insightful and was drawn to further explore the intersection of these two 

critical resources. I can trace the beginning of my academic interest in the water–energy 

nexus directly to Webber’s course. 

The other event was my assignment to several engineering projects in my 

consulting practice at Hansen, Allen & Luce dealing with the energy efficiency and 

optimization of public water systems. My colleague Steve Jones, after some 10 years of 

modeling and analyzing dozens of such utilities, had noticed that many of them shared 

the same inefficiencies and opportunities for improvement. Beyond the company’s usual 

engineering services, Steve began providing focused studies to help water systems 

identify, evaluate, and implement affordable energy-saving measures, all while 

maintaining or even improving their level of service and water quality. I happened to join 

Hansen, Allen & Luce about this same time and was assigned to many of Steve’s 

 



 

projects, thereby gaining a practical perspective on how water systems’ management of 

energy use contributes to their sustainable planning, design, and operation.  

The confluence of these two experiences—developing an academic interest in 

energy-for-water issues and seeing their impact on water systems in my daily work—led 

me to pursue a doctoral degree and study this very subject on which the existing research 

was so sparse. I chose the University of Utah and the Department of Civil and 

Environmental Engineering for, among other reasons, the department’s mission to 

prepare students for professional practice and transfer knowledge to the public and 

private sectors. My experience here has defined for me a completely singular journey 

both challenging and rewarding for my research and consulting careers. 

In completing this journey I must thank many people. My wife, Dr. Christie 

Sowby, provided incredible wisdom and encouragement throughout the process. Not one 

to be deterred by even major obstacles, she inspired me to continue this work and 

generously gave me the time to do so. Though a pianist by trade, Christie is now more 

than conversant in water and energy issues after witnessing so many of my presentations, 

iterations, and exclamations. The anticipated arrival of our first child in the final semester 

of the program, needless to say, motivated me to finish quickly. My mother, Laurie 

Williams Sowby, a journalist, helped edit my writings. My father, Steve Sowby, also a 

civil engineer, reviewed my early manuscripts and provided immediate feedback on my 

ideas in countless casual conversations. My in-laws the Burgons graciously lent me their 

basement and rear patio where I spent much of the summer studying and writing.  

My supervisory committee at the University of Utah, consisting of Drs. Steve 

Burian, Michael Barber, Christine Pomeroy, Tom Cova, Jeff Horsburgh, and Zain Al-

xii 



Houri was an excellent team for this undertaking. Their regular communications, 

meetings, and efforts in my behalf over the past few years are much appreciated. Dr. 

Burian in particular was an exceptional advisor, mentor, instructor, coauthor, and friend 

who understood my unique position as both student and practitioner and went out of his 

way to guide me through this research program. 

Colleagues at Hansen, Allen & Luce—particularly Steve Jones, Gordon Jones, 

and Marv Allen—encouraged my studies, allowed me a flexible work schedule, and 

found ways to use my research to help serve our clients throughout the country. 

Associates at Cascade Energy, Pacific Northwest National Laboratory, Idaho National 

Laboratory, the Center for Advanced Energy Studies, the American Water Works 

Association, Aquaveo, and the University of Utah’s Urban Water Group were likewise 

supportive and influential. 

Countless others unnamed contributed to this effort in more subtle and indirect 

ways, and I sincerely thank them for their inspiration, service, and faith. 
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CHAPTER 1 

 
 

GENERAL INTRODUCTION 

 
1.1 Background 

Modern water systems require energy to extract, treat, and deliver reliable, high-

quality water. This energy-for-water relationship is one facet of the water–energy nexus, 

a broad research area that explores the interdependencies of water and energy resources. 

Water utilities’ energy footprints carry financial, environmental, and social 

impacts that suggest sustainability opportunities that typically have not been considered 

in planning, design, or operation (Barry 2007; CEC 2016). One definition of 

sustainability is the “triple bottom line” described by Elkington (1997), which 

encompasses economic, environmental, and social considerations. Water utilities’ energy 

use touches all three. Energy is a significant cost, accounting for up to 40% of a water 

utility’s operating budget, or even more for small systems; this proportion is expected to 

increase with scarcer water supplies and stricter water quality standards (EPA 2016). 

Environmental impacts include the emissions associated with generating power for water 

services, which affect local ecosystems and the global climate (Lee et al. 2017; Stokes 

and Horvath 2009; Lane et al. 2015; UC–Berkeley 2011; Cooley et al. 2012; Griffiths-

Sattenspiel and Wilson 2009). On the social side, stakeholders are demanding more 

transparency and responsibility from government, businesses, and utilities. Water users 

and the public expect their water utility to be fiscally responsible and perform efficiently 
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while fulfilling a social contract to provide a vital service in a monopolized market (De 

Asís 2009). 

With increasing population, stricter water-quality standards, and rising energy 

costs, energy efficiency in the water sector is emerging as an essential solution (Tidwell 

et al. 2014; Liu et al. 2012; Jones et al. 2015; DOE 2014; Water in the West 2013; EPA 

2016; Hoffman et al. 2015; Molina 2014). Potential and theoretical energy efficiency 

savings for water utilities have been studied extensively, and most estimates indicate that 

savings of 10%–30% are possible through combinations of operational (no-cost) and 

capital measures (Voltz et al. 2017; Horne et al. 2014; Liu et al. 2012; MassDEP 2016; 

EPA 2013; Alliance to Save Energy 2016; DOE 2014). Actual results confirm that the 

savings are indeed possible (Sowby 2016); see Appendix A for a more complete 

discussion. The energy savings come by implementing capital projects, operational 

changes, and efforts to deliver water by the most energy-efficient path.  

Several best practices and resources are available to guide water utilities to more 

energy-efficient operations (DEC 2016; EPA 2008; Liu et al. 2012; NYSERDA 2010; 

Martin and Ries 2014; Chelius and McDonald 2016; UDDW 2014; Jones and Sowby 

2014; Moran and Barron 2009; Arora and LeChevallier 1998; Hamilton et al. 2009). The 

most common include: 

 Determining baseline energy intensity and monitoring regularly 

 Auditing water and energy use simultaneously 

 Upgrading old or improperly designed equipment 

 Prioritizing efficient water sources 

 Prioritizing efficient conveyance paths 
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 Increasing storage utilization to balance loads 

 Adjusting pressure-reducing valves to minimize unnecessary flow 

 Eliminating redundant pumping 

 Controlling water loss 

Still, the opportunity remains largely untapped, and much more can be done to 

reduce water utilities’ energy use. While these case studies and general practices are 

helpful, each system is unique and requires individual attention and analysis. 

The following literature review identifies several research needs, among which 

are quantifying water systems’ energy requirements to better characterize energy-for-

water demands, determining how certain factors influence the energy intensities to better 

estimate the energy requirements of unobserved systems, and developing a method to 

model energy intensity at the subsystem scale to improve energy performance. The work 

presented here addresses these needs, respectively, through 1) the collection of annual, 

utility-scale energy intensities for public water supply in the United States through a 

panel of water and energy observations; 2) a statistical analysis of the variables and 

relationships that influence these energy intensities and the development of an accurate 

statistical model for predicting energy intensity; and 3) the development and application 

of a method to rapidly compute system-wide energy intensities with node-and-link 

resolution in a water distribution network by tracing the entire service chain from energy 

demand to water delivery. 
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1.2 Literature Review 

1.2.1 Energy Intensity and Related Studies 

 Water services consume a substantial amount of energy worldwide, accounting 

for 0.5% to 17% of a country’s energy use profile, with higher values usually 

corresponding to developing nations (Gerbens-Leenes et al. 2014). In the United States, 

this value is about 2%, though significant regional variations have been observed 

(Sanders and Webber 2012; Tidwell et al. 2014). The California Energy Commission 

found that water supply consumes 19% of the state’s electricity and 30% of its natural 

gas, underscoring the significance of the water sector’s role in energy consumption, 

especially amid California’s current multiyear drought (Klein 2005; Navigant Consulting 

2006).  

An important metric in these and related studies is energy intensity, which 

describes a water system’s energy footprint in the most basic sense and is used in 

numerous calculations, models, and planning scenarios. Energy intensity is energy 

required to extract, treat, and deliver a unit of water to the end-user. In Wilkinson’s 

(2000) words, “Energy intensity is the total amount of energy, on a whole-system basis, 

required for the use of a given amount of water in a specific location.” Normalizing by 

volume eliminates all effects of water demand and allows comparison solely on terms of 

energy. Also called embedded energy, the value is often expressed in kilowatt-hours per 

million gallons (kWh/MG). For a complete water system, the average energy intensity 

over a given time period is the sum of all energy input divided by the total water delivery 

volume. If accounting for true source-to-customer energy intensity as in this research, the 

numerator must also include the energy expended for imported water. 
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  Several studies have investigated energy intensity for water services at various 

scales. Plappally and Lienhard (2012) presented a comprehensive assessment of average 

water-related energy intensities that include public supply, end use, agriculture, and 

rainwater harvesting. Siddiqi and Fletcher (2015) compared energy intensities for 

agricultural and residential water use in Australia and Europe. Wakeel et al. (2016) and 

Gerbens-Leenes et al. (2014) reviewed the literature for energy consumption of water-use 

cycles globally (by country) and found great variation, with developing countries usually 

spending a larger share of their national energy use on water supply than developed 

countries. EPRI (2002, 2009, 2013), DOE (2012a, 2012b), and Twomey and Webber 

(2011) estimated U.S. averages of water-related energy intensity. Others have compared 

energy intensities among cities or regions in the same state (Wilkinson et al. 2006; 

Sowby et al. 2015; Bennett 2010a, 2010b; Blanco et al. 2012). Scanlon et al. (2017) 

observed that while broad data are welcomed, local-to-regional analyses are more 

valuable for policy, decision making, and action. 

State-level data for California, Idaho, Utah, Texas, Iowa, Illinois, Indiana, 

Wisconsin, New York, and Massachusetts are also available (Cohen et al. 2004; Klein 

2005; Navigant Consulting 2006; Wilkinson et al. 2006; Larsen and Burian 2012; UDWR 

2012; Stillwell et al. 2010; PSCW 2016; Twomey and Webber 2011; ISAWWA 2012; 

Yonkin et al. 2008; DOE 2012a, 2012b). The results range over an order of magnitude 

depending on the location and give only a partially complete portrait of how much energy 

water services require. These few, broad averages, based mostly on calculations rather 

than observations, represent almost all of the publicly available information on this 

subject, which, given the magnitude of the associated electric load, is surprisingly 
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limited. 

Differences also exist in energy intensities within an individual system since 

delivering water from different sources to different elevations requires different amounts 

of energy. Saliba and Gan (2006) and Spang and Loge (2013, 2015) have illustrated such 

differences with so-called energy maps, which they used to benchmark performance and 

evaluate water and energy conservation measures. This type of analysis, while useful, is 

computationally intensive and therefore rare.  

Beyond the geographic variations, energy intensities can also change over time. 

According to unpublished data from Hansen, Allen & Luce, Jordan Valley Water 

Conservancy District’s energy intensity in 2013 was 50% greater than in 2012 and 2014. 

According to unpublished data from Park City, Utah, the energy intensity of the city’s 

water system increased by 73% between 2011 and 2014. For Wisconsin water systems, 

energy intensity has increased almost 25% in the past 15 years (PSCW 2016; Elliott et al. 

2003). Few such time series are available, limiting the investigation and interpretation of 

such phenomena, though the information could help water systems understand energy use 

patterns, improve efficiency, and anticipate future changes.  

Though past research has advanced the knowledge of the water sector’s energy 

requirements, the data are limited in terms of 1) spatial resolution, 2) temporal resolution, 

and 3) quality. In spatial resolution, the published data are either broad averages that blur 

local differences or isolated local observations that do not apply elsewhere. Tidwell et al. 

(2014) recognized these important limitations when estimating energy requirements for 

water services in the western United States: “Due to the limited availability of data, the 

use of broad averages of key factors important to calculating electricity use had to be 
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employed…. The electric intensities of different drinking and wastewater unit processes 

relied on national-level averages.” In their research on water supply energy intensities, 

Twomey and Webber (2011) observed that “the United States is a difficult country to 

generalize” due to its size and incredibly diverse climate and topography. Even Klein’s 

(2005) group, which produced one of the most complete studies to date, “assumed 

prototypical water distribution energy intensity to be about 1,200 kWh/MG” since no 

better observations or modeling methods were available. In their study of the water–

energy nexus in Texas, Stillwell et al. (2010) concluded that “substantially more site-

specific data are necessary for a full understanding of the nature of the energy-water 

nexus.” 

The published data are also limited in time. With a few exceptions, all of the 

energy intensities found in the literature describe only a single time period for each 

system. Even the few time series available indicate that the energy intensity varies from 

year to year—perhaps as much as 50%—and possibly at finer temporal scales still. The 

lack of time series on energy intensity is particularly profound. One tool for modeling 

urban water–energy interactions acknowledges the limitation of its “simplifying 

assumption of constant values” for energy intensity when in reality there are cases where 

it “varies considerably” (Baki and Makropoulos 2014). Spang and Loge (2013, 2015) are 

among the few to attempt temporal characterization of energy intensity.  

Data quality is another limitation since the underlying methodologies differ. 

Some, for example, ignore the effect of water loss between production and delivery, 

leading to an underestimation of actual energy intensity. With typical water loss values 

ranging from 5% to 35% (EPA 2010), this is one issue that can significantly affect the 
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results and introduce error into subsequent calculations. Incidentally, one recent study 

found that reducing water loss represents a substantial energy savings potential (Lam et 

al. 2017). After its statewide study, the Illinois Section of the American Water Works 

Association (ISAWWA 2012) concluded that “a consistent and comparable data 

collection methodology is needed across Illinois and nationally to gather and track water 

and energy data at the utility level.” Indeed, a major finding of the literature review was 

the lack of consistent empirical data to describe energy use in the water sector.  

 
1.2.2 Factors Influencing Energy Requirements 

Beyond the general data needs, there is a specific need to advance the knowledge 

of water-related energy intensities and their driving forces. Past studies have focused on 

snapshots of several cities or an in-depth analysis of a single city; they do not explain the 

variability. Many have assumed that water source type, utility size, conveyance distance, 

climate, technology, infrastructure age, and topography are important factors (Wakeel et 

al. 2016; Tidwell et al. 2014; Water in the West 2013; Twomey and Webber 2011; Klein 

2005). Of these, only size has been formally investigated, and that on only a small scale, 

which showed that larger water utilities generally exhibit lower energy intensities (Young 

2015; ISAWWA 2012; PSCW 2016). This finding is consistent with studies of water and 

wastewater treatment facilities (DOE 2012a, 2012b). General data from others indicate 

that surface water systems have lower energy intensities than groundwater systems 

(Twomey and Webber 2011; EPRI 2009). None of these patterns are tied to specific 

locations, and, with the exception of Wisconsin (PSCW 2016; Elliott et al. 2003), all of 

these studies have captured mere snapshots of water utilities’ energy intensities, with 

little or no context or consideration for how these values change over time. Even where 
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fine observations exist, the context may be insufficient for analysis. Data that describe 

only the energy intensity and not the context (such as the geographic setting, water 

source, or utility size) are not as useful. In order to compare energy intensities, one must 

understand the conditions in which the observations were made.  

No research has yet quantified the relationships between a water utility’s energy 

intensity and geographic or time-variant variables that describe the conditions that may 

affect energy intensity. Determining energy intensity is one of the first steps to realizing 

energy savings and the associated benefits, but actual data are difficult to obtain. 

Research and practice are also limited by available data and could benefit from a method 

to estimate energy intensity for any system. Such capability could inform national-level 

evaluations of the water–energy nexus (such as those by the U.S. Department of Energy, 

the U.S. Geological Survey, and national laboratories) as well as capital or operational 

improvements for energy management at local water utilities. 

 
1.2.3 Subsystem Energy Modeling 

Drawing on the best practices listed earlier, water utilities can improve their 

sustainability by identifying and implementing the most energy-efficient scheme for 

water delivery that still satisfies the prescribed level of service and water quality (Jones 

and Sowby 2014). However, without a detailed and efficient modeling method that 

considers system-specific issues, the optimum scheme is difficult to determine, especially 

for complex systems with many pressure zones, water sources, and pumping facilities. 

The difficulty of computing energy intensity increases with both system complexity and 

level of spatial and temporal detail.  

A related but more developed field is that of energy density maps and community 
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energy mapping. Combining mildly aggregated (e.g., by city block) energy consumption 

data with spatial data, energy mapping has become a useful tool for community energy 

planning and sustainability engagement (Webster et al. 2011; Reul and Michaels 2012; 

Ea Energy Analyses and GRAS 2012; Gilmour and McNally 2010). Energy mapping 

helps “create benchmarks, expose patterns, and display building performance” and 

reveals “energy gushers” where a large potential exists for energy savings (Reul and 

Michaels 2012). Gilmour and McNally (2010) observed that a central component of 

energy mapping is the ability to visualize the results.  

Saliba and Gan (2006) and Spang and Loge (2013, 2015) applied these concepts 

to study energy intensity differences within an individual water system at the pressure-

zone level using facility energy data and geographic information systems (GIS). Both 

enabled energy calculations at finer geographic resolution to prioritize site-specific water 

and energy conservation actions that would not have emerged from a lumped, system-

wide analysis. However, their spatial analyses did not penetrate to individual nodes and 

links and did not capture changes over time—an important consideration when trying co-

optimize hydraulics and energy use at these same scales and time steps. 

The spatially and temporally dynamic nature of water system behavior merits a 

more detailed method that considers the energy consequences of system fluctuations that 

would not be apparent in a static snapshot or broad analysis—in other words, a 

simulation-based approach.  

 
1.2.4 Research Needs 

Many research needs in the water–energy nexus are well documented and 

consistent with those already discussed. One recurring theme is the paucity of data, 
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analysis, and models related to the water sector and its energy use. The U.S. Department 

of Energy defined the optimization of water systems as one of its six strategic pillars in 

the water–energy nexus; the report observed, however, that “reliable data is noticeably 

scarce” in this field, being mostly the results of engineering calculations rather than 

actual observations (DOE 2014). Goldstein et al. (2008) identified data exchange as an 

important component of current and future approaches to manage both water and energy. 

Bazilian et al. (2011) suggested developing “robust analytical tools, conceptual models, 

appropriate and validated algorithms, and robust datasets that can supply information on 

the future use of energy, water, and food,” noting that such efforts have been limited to 

date. Sandia National Laboratories found that the water–energy nexus suffers from the 

“lack of consistent and detailed data and the lack of models” and that better ways to 

collect and manage data are needed (Pate et al. 2007). The National Academies (2013) 

likewise stated that “the lack of data on energy–water linkages remains a key limitation to 

fully understanding the scope of this issue.” Other national associations recommend 

improved data collection and auditing of water utilities as one step to improving the 

energy efficiency of the water sector (White 2013). Another survey found that 

“comprehensive data about the energy needed for each stage of the urban water lifecycle 

are limited. In particular, few nationwide studies have been conducted on the amount of 

energy used to provide drinking water and wastewater services” (GAO 2011). Young 

(2015) similarly observed that “the energy intensity of water and wastewater systems is 

relatively undocumented. There are few data sources and reports analyzing the energy 

required to move and treat water, and the data generally are not publicly available.” 

While past studies have been helpful, the industry “could benefit from higher-resolution 
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analysis in this field” (Water in the West 2013). A recent U.S. Geological Survey report 

on the water–energy nexus stated that “despite the national importance of energy use for 

water, comprehensive national studies of this topic are lacking” (Healy et al. 2015).  

Even in sophisticated systems models like PRIMA (Kraucunas et al. 2015), water 

and energy systems are not explicitly linked and do not reach the granularity of individual 

water systems needed for decision-making at the utility level. In other systems models, 

only a static, rudimentary link between energy and water may be specified (Lubega and 

Farrid 2013). In physics-based system models there are many variables and assumptions 

that must be made in the absence of empirical relationships and adequate data. These 

assumptions may not be appropriate and could affect the accuracy of such models 

(Lubega and Farrid 2014). These and similar models could benefit from finer data at the 

intersection of water and energy use. The author’s own interactions with researchers at 

Pacific Northwest National Laboratory, Idaho National Laboratory, the Center for 

Advanced Energy Studies, and the U.S. Environmental Protection Agency confirm this 

great need for data and models. 

Policy considerations are also relevant. The heretofore fragmented and siloed 

policies that have governed water, energy, and other resources like food and land are 

breaking down with “nexus” thinking that recognizes their interdependencies and 

therefore need to be revisited. The purposes or outcomes of many studies in the water–

energy nexus have clearly stated a need to integrate water and energy research and to 

unify their policies and governance (Ernst and Preston 2017; Scanlon et al. 2017; Chini 

and Stillwell 2017; King et al. 2013; Stillwell et al. 2010; Hussey and Pittock 2012; 

Wakeel et al. 2016; United Nations 2014; Finley and Seiber 2014; Young 2014; Gude 
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2015; Webber 2015; Bazilian et al. 2011; Cooley et al. 2011; Ramos et al. 2010; Webber 

2008; Scott et al. 2011). One specific policy question concerns public and private 

ownership of water utilities and whether the ownership structure imparts any significant 

energy performance benefit. If so, this difference may affect the content and audience of 

future policies to manage energy in the water sector. Appendix C addresses this question. 

The literature review indicated that few studies have addressed the energy used to 

supply water and that more research on this topic is needed in order to control costs, 

reduce environmental impacts, and manage interdependent water and energy resources. 

Reliable energy-for-water data will inform engineering recommendations to conserve 

energy while still providing adequate water service (and thereby reduce energy 

production and the associated carbon emissions). They will also support local, state, and 

federal policies on improved management of water and energy and help identify and 

prioritize further research opportunities. 

The identification of similar research needs by diverse stakeholders testifies of 

their broad significance and of the opportunities to contribute. The research program 

outlined below addresses some of these needs.  

 
1.3 Research Program 

Based on the literature review and the researcher’s professional and academic 

experience, the following research program was designed to advance the body of 

knowledge. The tripartite program consists of a national energy intensity survey, the 

development of a statistical model and benchmarking tool (based on the survey results) 

relating a water system’s energy use to a few key variables, and a high-resolution 

modeling method for analysis of energy intensity within a water distribution system. 
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1.3.1 National Energy Intensity Survey 

The purpose of the energy intensity survey was to collect annual, utility-scale 

water and energy observations to better characterize energy-for-water demands in the 

United States and enable further scientific study. The literature review revealed a clear 

need to acquire empirical data describing water utilities’ energy use. Without adequate 

local and time-specific data, one may resort to using an energy intensity from another 

location or time, or perhaps an average, and assume that the data are valid for the 

intended conditions. This spatial and temporal extrapolation ignores important 

differences and introduces uncertainty into the results, but there have been few or no 

options to do otherwise. An improvement is the collection and publication of data at finer 

spatial scales and multiple time steps. This offers a greater selection of specific local data, 

more formally quantifies the water sector’s energy use, and leads to estimation of energy 

intensity for unobserved systems. 

To this end, a national panel survey of water utility energy intensities in the 

contiguous United States was undertaken. Chapter 2 presents the results of the survey. 

 
1.3.2 Statistical Model 

The purpose of this phase was to produce a statistical model, based on empirical 

relationships between energy intensity and other variables discovered from the survey 

data, that can estimate energy intensities for unobserved water systems and facilitate fair 

energy benchmarking of diverse and otherwise incomparable water systems. 

While several reasonable factors have been suggested to explain observed 

variability in water systems’ energy use, the literature review indicated that the 

relationships have not been investigated formally, and certainly not to the point of 
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quantification. Further, since water systems vary greatly in water source type, climate, 

and size, comparing their energy performance to each other without normalizing for such 

factors is both unfair and misleading. The empirical statistical model developed as part of 

this research is an improvement that enables estimates of a water system’s energy use as 

function of a few key variables and also enables fair comparisons and benchmarking by 

considering such variables. The model lends itself well to both energy use estimation and 

fair energy benchmarking of water utilities. Chapter 3 describes the model and its 

applications. 

 
1.3.3 Energy Intensity Modeling 

The purpose of this phase was to develop and demonstrate a method for modeling 

energy intensity in complex water distribution systems with node-and-link resolution to 

inform energy management decisions at the same scales.  

As the magnitude, location, and timing of water demands changes in a given 

system, the interactions among multiple water sources, pressure zones, and facilities 

complicate the determination of site- and time-specific energy intensities (i.e., how much 

energy was input to deliver water at a point within the system). The results are unique to 

each system configuration and demand scenario, making the identification of optimal 

operations computationally intensive.  

This research led to a method for rapid computation of system-wide energy results 

in high resolution to help uncover efficiency opportunities not apparent from a lumped 

system analysis. Such a method facilitates the testing of alternative operational schemes, 

lends itself to optimization techniques for research or engineering, and informs energy 

management decisions at relevant scales. Applications have already been explored for 
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implementing targeted efficiency initiatives and assessing the energy required or saved 

through design choices. This contribution will further develop such methods to enable 

better prediction, targeting, and monitoring of energy savings at local levels within a 

water distribution system.  

Chapter 4 describes this new method for subsystem energy intensity modeling 

based on the principles of extended-period hydraulic modeling, energy maps, and general 

property concentrations. 

 
1.4 Conclusion 

As one facet of the water–energy nexus, the dependence of water systems on 

energy systems is a subject of increasing interest. The literature review identified several 

pertinent opportunities, notably the need for a consistent national dataset, the 

investigation of influential factors, and a method to model energy intensities at subsystem 

scales. The research presented here addresses these topics.  
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CHAPTER 2 

 
 

SURVEY OF ENERGY REQUIREMENTS FOR 

PUBLIC WATER SUPPLY IN THE 

UNITED STATES1 

 
2.1 Introduction 

Though water on Earth is abundant, most of it, in its natural state, is salty, frozen, 

underground, remote, or otherwise unsuitable for human consumption. In modern water 

systems that reliably supply high-quality water, these challenges are overcome with 

energy. The processes of extraction, conveyance, treatment, storage, and distribution 

transform natural water resources into a usable product. This energy-for-water 

relationship is one facet of the water–energy nexus, a broad research area that explores 

the interdependencies of water and energy resources. 

Water utilities’ energy footprints carry financial, environmental, and social 

impacts that suggest sustainability opportunities that typically have not been considered 

in their planning, design, or operation (Barry 2007). Energy is a significant cost, 

accounting for up to 40% of a water utility’s operating budget, or even more for small 

systems; this proportion is expected to increase with scarcer water supplies and stricter 

water quality standards (EPA 2017). Environmental impacts include the emissions 

associated with generating power for water services, which affect local ecosystems and 

1 Originally published in Journal AWWA, 2017, 109(7): E320–E330. Reprinted with 
permission. 

 

                                                 



26 

the global climate (Lane et al. 2015, Ramos et al. 2010, Cooley et al. 2012, Griffiths-

Sattenspiel & Wilson 2009, Stokes & Horvath 2009). On the social side, stakeholders are 

demanding more transparency and responsibility from government, businesses, and 

utilities. Water users and the public expect their water utility to use energy and other 

resources wisely while fulfilling a social contract to provide a vital public service in a 

monopolized market (De Asís 2009). 

Many have studied the energy requirements of U.S. public water supply from 

various angles and for various purposes. The U.S. Department of Energy (DOE 2012a) 

published tables of energy intensities for water services in a few locations, and the 

Electric Power Research Institute (EPRI 2013, 2009, 2002) investigated typical energy 

intensities of certain processes in the urban water cycle. Plappally and Lienhard (2012) 

presented typical energy intensities for public supply, and Siddiqi and Fletcher (2015) 

focused on the energy consumed during end use. A statewide study of Illinois water 

utilities (ISAWWA 2012) captured data from 44 water suppliers in order to inform 

energy- and cost-saving actions. Spang and Loge (2013) and Saliba and Gan (2006) 

highlighted differences in energy intensity at subcity scales as part of targeted water and 

energy conservation programs. Collectively, these studies show how energy intensities 

vary at multiple scales and why local observations matter. 

Twomey and Webber (2011) estimated the energy use associated with the U.S. 

public water supply. Using a top-down approach with aggregated energy and water data 

reported to various national organizations, they calculated that public water supply, end-

use water heating, and water reclamation consume 4.7% of the nation’s primary energy. 

Sanders and Webber (2012) estimated nationwide water-related energy use, again using 
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aggregated data, and found that all water-related energy uses consume 12.6% of U.S. 

primary energy. Both studies were the first to quantify such uses and acknowledged that a 

lack of regional and local data limited their analyses, which require geographic and 

temporal fidelity to account for the country’s diverse topography and climates. Tidwell et 

al. (2014) recognized similar limitations when characterizing water-related electric loads 

in the western United States and resorted to using “broad averages” of energy intensity. 

Even Klein’s (2005) group, which produced one of the most complete studies to date on 

energy demands for water services in California, assumed a prototypical energy intensity 

for water distribution since no better data were available. Means (2004) observed that 

finer data than national estimates are needed to inform local policies and conservation 

measures. These studies all recognize that a lack of empirical, local data limits 

understanding of the water–energy nexus. 

Several U.S. government agencies have expressed the need for better data on 

energy use for public water supply. The U.S. Department of Energy, in attempting to 

develop a broad water–energy nexus strategy, observed that reliable data are noticeably 

scarce in this field, being mostly the results of engineering calculations rather than actual 

observations, which the five previous references illustrate (DOE 2014). Another survey 

found that “few nationwide studies have been conducted on the amount of energy used to 

provide drinking water and wastewater services” (GAO 2011). The U.S. Geological 

Survey, which produces national assessments of water use and its impact, stated that 

“despite the national importance of energy use for water, comprehensive national studies 

of this topic are lacking” (Healy et al. 2015). 

The private sector and national associations have identified similar data gaps. 
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Young (2015) observed that “there are few data sources and reports analyzing the energy 

required to move and treat water, and the data generally are not publicly available.” The 

Awwa Research Foundation recommended compiling actual energy intensity 

observations, noting that such data could help influence policies, promote public 

awareness, and reduce water and energy demands (Means 2004). The Foundation later 

conducted a study to develop energy benchmarks for water and wastewater utilities 

(Carlson & Wallburger 2007). The study summarizes natural gas and electricity 

intensities for 125 water utilities but does not link individual observations to their 

location. 

An Illinois study conducted by the local chapter of the American Water Works 

Association (AWWA) concluded that improved data collection, especially of energy use, 

is critical to ongoing research in this field (ISAWWA 2012). Other national associations 

recommend improved data collection and auditing of water utilities as one step to 

improving the energy efficiency of the water sector (White 2013). While past studies 

have been helpful, the industry “could benefit from higher-resolution analysis in this 

field” (Water in the West 2013). 

More generally, others have requested better data resources in the water–energy 

nexus. Bazilian et al. (2011) called for robust datasets on the use of energy, water, and 

food, noting that such efforts had been limited. Goldstein et al. (2008) identified data 

exchange as an important component of approaches to managing both water and energy. 

A group at Sandia National Laboratories found that water–energy nexus research suffers 

from a lack of consistent, detailed data and models and that better ways to collect and 

manage data are needed (Pate et al. 2007). The National Academies (2013) likewise 
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stated that “the lack of data on energy–water linkages remains a key limitation to fully 

understanding the scope of this issue.” 

Despite the importance of energy in the water sector, few data on energy-for-

water demands are available. The literature indicates that such data are useful but scarce, 

limiting the type and accuracy of analyses that can be performed and hindering efforts to 

sustainably manage both water and energy resources. According to the literature, in the 

United States and elsewhere, energy intensities for public water supply have not been 

well characterized, though the research community, government agencies, and other 

groups have repeatedly acknowledged the need for adequate local, empirical data. The 

identification of similar research needs and applications by diverse stakeholders testifies 

of their broad significance. 

This study extends previous work to quantify energy requirements for public 

water supply, contributing a national dataset of annual- and city-scale observations 

obtained chiefly through primary data collection. The following sections describe the 

study methodology, the study results, a discussion of observations and applications, and 

recommendations for further work. 

 
2.2 Methods 

2.2.1 Definitions 

Here, a “water system” or “water utility” is defined as an entity that delivers 

potable water to the public. The entity may be publicly owned, as by a municipal 

government, or privately owned, as by a corporation. Self-supplied agricultural and 

industrial water uses are excluded from this definition. “Public water supply” means the 

activity such water systems undertake. 
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 The “energy intensity” of public water supply is a type of energy footprint, a 

single metric that describes the energy requirement of water services (and therefore the 

dependence of a water system on the electric grid). It is the energy required to deliver a 

unit of drinking water to the end-user. Since water utilities consume energy 

predominantly as electricity (Twomey & Webber 2011), the energy data used in this 

report are limited to electricity. In Wilkinson’s (2000) words, “Energy intensity is the 

total amount of energy, on a whole-system basis, required for the use of a given amount 

of water in a specific location.” Since water delivery requires several operations—

extraction, conveyance, treatment, distribution, and so on—the energy for the entire 

process is cumulative. The water volume, however, is only that delivered to end-users, 

i.e., water that is beneficially used. The delivered volume is defined as the total volume 

consumed at all customer meters or their equivalent. Normalizing by delivered volume 

accounts for water loss between production and delivery and also eliminates all effects of 

water demand, allowing comparison solely in terms of energy. Thus for a complete water 

supply system, the energy intensity is 

 𝑌𝑌𝑠𝑠 =
∑ 𝐸𝐸𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑉𝑉𝐷𝐷
 (2.1) 

where YS is the total energy intensity of the water system, Ei is the energy required for a 

given step of the process (extraction, treatment, pumping, etc.), and VD is the volume of 

water delivered to end-users.  

 This study accounts for energy expended in the provision of drinking water 

between the natural water source and the customer meter. It includes the energy 

associated with any imported water (defined as water procured by wholesale purchase or 

similar agreement from another water supplier) and extraction, transmission, treatment, 
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and/or distribution by the water utility itself. End-use conditioning (such as water 

heating) and wastewater processes are excluded from this study, though their contribution 

to overall water-related energy demand is significant as described earlier. 

 
2.2.2 Sample Design 

In their research on this subject, Twomey and Webber (2011) observed that “the 

United States is a difficult country to generalize” due to its size and incredibly diverse 

topography and climates and that national averages “do not capture the wide disparity 

between regional water systems.” In this study, the contiguous 48 states were selected as 

the study area, with sample points chosen based on geographic coverage and water 

system size.  

The sample design began with existing literature, including data for Los Angeles, 

CA (Blanco et al. 2012); New York City, NY (DEP 2016, Yonkin et al. 2008); 

Bloomington, IN (ISAWWA 2012); Mishawaka, IN (ISAWWA 2012); Valparaiso, IN 

(ISAWWA 2012); and several Wisconsin cities (PSCW 2016). State-level observations 

for Illinois (ISAWWA 2012), Iowa (DOE 2012a), and Massachusetts (DOE 2012a) were 

available but were excluded from this study because of the aggregation. Primary data 

collection then followed. Water systems serving the 50 most populous cities were 

selected if not already included. At least one water system in each state was then selected 

if not already included. Finally, additional sites were selected in order to achieve denser 

and more consistent geographic coverage. The survey continued until successful 

responses represented at least 25 states, at least 20 of the 50 largest cities, and a total 

service population of at least 40 million. 
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2.2.3 Survey Questions 

Each water system identified in the sample was contacted via phone, email, or 

letter and invited to contribute data. The following specific data were requested, similar 

to the ISAWWA (2012) study, but with the additional request for multiple time steps to 

produce a panel dataset: 

 Approximate service population 

 General description of water sources, including proportions of surface 

water, groundwater, and imported water 

 Three years of drinking water production data (annual totals) 

 Three years of drinking water delivery data (annual totals) 

 Three years of drinking water system electricity use data (annual totals in 

kilowatt-hours) 

 
2.2.4 Survey Response 

In all, 351 water systems were invited to contribute. One hundred nine successful 

responses were received, including some obtained from the literature review. A response 

was considered successful if at least one year of energy and water delivery data were 

provided or able to be derived and if the per capita water use was within a reasonable 

range relative to that reported by the U.S. Geological Survey (Maupin et al. 2014). If the 

respondent indicated imported water, the survey was extended to the supplier. Some 

respondents elected to remain anonymous, in which case the data were included in the 

analysis but were deidentified. The respondents represented drinking water services for 

some 46 million people, or 14% of the US population, in 36 states. The acquisition of 

primary data surpassed previous studies on the subject. 
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2.2.5 Statistical Tests 

Two statistical tests were used in this analysis. The first was a search for a 

variable transformation that would convert energy intensity into a normally distributed 

variable for the purposes of fitting a probability distribution. The test compares nine 

transformations from the ladder of powers (Tukey 1977) and reports the chi-squared 

value of each; the transformation with the lowest chi-squared value is the one that most 

closely matches a normally distributed variable. The second test was a two-sample t-test 

to determine whether the means of energy intensities in eastern- and western-U.S. water 

systems were the same. Since the variances of the two samples differed, the version of 

the test with unequal variances (Welch’s t-test) was selected (Welch 1947).  

2.3 Results 

Figures 2.1 through 2.5 and Table 2.1 show the results for a cross section of the 

panel dataset, being data for the most recent year available in the survey. Figure 2.1 

shows the geographic distribution of results. A color scale from green to red indicates the 

energy intensity, and graduated symbols indicate the volume of water delivered. A 

histogram of energy intensities is shown in Figure 2.2. The best fit for the observed data 

was a log-normal distribution with μ = 7.573 and σ = 0.735, which is also shown in 

Figure 2.2. Figure 2.3 compares results from the eastern and western United States 

according to the division the U.S. Geological Survey defined in its most recent water-use 

study and shown in Figure 2.1 (Maupin et al. 2014). The two-sample t-test yielded a p-

value of 0.0001, leading to the conclusion that the mean energy intensities in these two 

regions are fundamentally different. A north–south comparison was performed but was 

not found to be statistically significant. Figure 2.4 compares results by primary water 
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Figure 2.2 Histogram of Energy Intensities for Public Water Supply 

Figure 2.3 Energy Intensity for Public Water Supply by Geographic Region 
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Figure 2.4 Energy Intensity for Public Water Supply by Primary Water Source Type 

Figure 2.5 Energy Intensity vs. Annual Water Delivery 
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source type. Figure 2.5 shows the relationship of energy intensity to water system size, 

where it should be noted that the largest systems are supplied by surface water. Figure 2.6 

shows differences in energy intensity for the same water system for consecutive years. 

Table 2.1 presents summary statistics.  

Energy intensity appears to be a function of many variables, some of which are in 

the utility’s operational control (such as source choices and water loss) and some of 

which are not (such as topography and climate). Energy intensity does not indicate the 

efficiency of energy use and therefore should not be used to compare efficiency or 

performance among water systems unless an appropriate normalization could be provided 

(Vilanova & Balestieri 2015, Bolognesi et al. 2014, Giacone 2012, Carlson & Wallburger 

2007). High energy intensity does not necessarily indicate inefficiency; it may simply 

mean that clean water is not readily available and requires more effort. Conversely, low 

energy intensity does not necessarily indicate best performance, since inefficiencies may 

Figure 2.6 Histogram of Differences in Energy Intensity for Public Water Supply. Values 
compare the energy intensity of the same water system in consecutive years. 
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still exist. It is, however, appropriate for internal benchmarking. Energy intensity does 

not describe the method of electricity production, so studies of emissions, carbon 

footprints, and climate impacts should consider the local fuel mix in addition to the 

energy intensity. 

Two types of uncertainty accompany the results. One is associated with the 

survey responses. Since these are almost impossible to verify, it must be assumed that the 

respondents’ organizations exercise appropriate quality control in the collection, 

documentation, and reporting of water and electricity use data. The second type of 

uncertainty is that associated with the actual electric and hydraulic measurements, and 

only a general estimate can be provided. Two power companies serving some of the 

respondents report that electricity meters are accurate within 2%, which is also the ANSI 

C12.1 standard for acceptable performance. Research by Barfuss et al. (2011) indicates 

that most water meters are accurate within 5%. Since the data are aggregated from 

numerous meters in a given system, even a few major inaccuracies at individual meters 

are not significant in the overall calculation. Applying propagation of errors (Ku 1966) to 

the energy intensity calculation, the results carry a relative uncertainty of about 5%. 

2.4 Discussion 

2.4.1 Variability 

The statistics of Figure 2.2 and Table 2.1 depict a wide range of energy intensities 

among the respondents, from 250 to 11,500 kWh/MG, with an average of 2,510 

kWh/MG and a weighted average of 1,809 kWh/MG when weighted by water volume. 

These averages are consistent with past studies. A U.S. Department of Energy publication 

(DOE 2014) indicated that in 2011, 0.1 quads of electricity were expended for 44 billion 
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gallons per day of public water supply, which equates to 1,825 kWh/MG—very near the 

weighted average of 1,809 kWh/MG observed here. Young (2015) reported an average of 

2,300 kWh/MG and Twomey and Webber (2011) reported an average of 1,960 kWh/MG, 

while EPRI (2013) cited weighted averages of 1,400–2,000 kWh/MG. Though the 

maximum observed in this study was 11,500 kWh/MG, the right-skewed histogram of 

Figure 2.2 and the fitted log-normal distribution imply that even higher values are 

possible. 

Figure 2.1 illustrates the geographic variability, confirming what others have 

observed from more limited data. The east–west comparison of Figure 2.3 indicates that 

water systems in the western United States typically require more energy to deliver the 

same amount of water. These systems exhibit overall higher energy intensities, and a 

wider range of energy intensities, than those in the eastern United States. This pattern is 

at least partially attributable to the topographic and climatic differences between the two 

regions. Causes of the geographic variability will be the subject of future work. 

 Classified by source type (Figure 2.4), systems supplied by surface water show 

the lowest average energy intensity and the narrowest range. The energy intensity of 

those with groundwater sources is more variable, depending on the depth to groundwater, 

among other factors. Imported water is generally the most energy intensive, presumably 

due to the greater conveyance distance and/or lift.  

The energy intensity of a given system may change over time (Figure 2.6). Mixed 

interannual increases and decreases were observed throughout the panel dataset, but the 

net change was near zero. The causes of such changes, while not fully investigated here, 

appear to be highly individual combinations of internal and external factors. In one case, 
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the system experienced acute drought conditions in one particular year, prompting the use 

of higher-intensity sources. In another case, the system switched from groundwater to 

imported water. Decreasing energy intensities could result from a climatically wet year in 

which low-intensity sources abound, or from deliberate efforts to manage energy such as 

those described by others (Jones et al. 2015, Mundt & Dodenhoff 2015, UDEQ 2015, 

Yarosz & Ashford 2015, Jones & Sowby 2014, EPA 2013). 

For a lack of data, past studies have had to assume average and/or static energy 

intensities for public water supply, leading to results that blur important differences. 

Since energy intensity varies in both time and space as shown here, it is recommended 

that such variability be considered in future work. For example, rather than assign the 

same average energy intensity to several water systems, one might use actual 

observations if available, consider their energy intensities to be randomly drawn from a 

sample with a log-normal distribution as shown in Figure 2.2, or apply the constraints 

described below. 

2.4.2 Constraints on Energy Intensity 

Past studies have produced typical energy intensities for certain processes or 

coarse state and national averages of a static nature. Given the spatial and temporal 

variability observed in this study, there is a need to develop mathematical models that can 

predict energy intensities beyond the observed dataset. The properties of known systems 

may be used to predict the energy intensity of others, or at least to constrain the range of 

probable values. The many variables that define such relationships will be the subject of 

further work, though a few key constraints are described here. 

One constraint is location (Figure 2.1). The dataset itself offers unprecedented 
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spatial detail and captures many major U.S. cities. If the desired water system does not 

exist in the dataset, energy intensity from a nearby water system in a similar geographic 

setting, or at least the east–west differences of Figure 2.3, may be used to inform a better 

estimate. Once sufficient data have been collected, more refined interpolations and 

multivariable relationships may emerge. The availability of the dataset produced by this 

study enables others to explore related questions. 

 Another constraint is a water system’s source type (Figure 2.4). This is a distinct 

constraint from location since source type and location are not strongly correlated. 

Knowledge of the primary water source may further refine an energy intensity estimate, 

since surface, ground, and imported water vary in intensity.  

 One key constraint identified in this analysis is a water system’s size (Figure 2.5). 

Though there is considerable scatter throughout the dataset, an economy of scale can be 

observed, where energy intensity generally decreases with system size (expressed as 

water deliveries, population, or similar metrics). This finding is consistent with studies of 

water and wastewater treatment processes (DOE 2012b, Twomey & Webber 2011, EPRI 

2002). All of the high-intensity systems are small, and most of the large systems exhibit 

lower-than-average energy intensities. Energy intensities for smaller systems vary widely 

while those of larger systems are confined to a narrower range. With one exception (Los 

Angeles), no large, high-intensity systems were observed. This produces a field of 

probable values that can be used to estimate, or at least constrain, the energy intensity of 

an unknown system.  

 If data for a particular water system are not available, estimation combining the 

above constraints—location, source, and size—offers an alternative to the coarse 
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averages used previously. 

 
2.4.3 Energy Data Reporting 

For almost all respondents, the most difficult step in the survey was providing the 

requested energy data. Some first indicated that they needed time to search for the energy 

data. Some responded promptly to the other questions and provided the energy data later. 

Still others, even after diligent searching, failed to locate their energy data though the 

other information may have been readily available. ISAWWA (2012) observed similar 

behavior in its own study, where nearly a third of respondents who began the survey 

stopped at the energy portion. 

There are several possible explanations. First, the process can be complex. Energy 

records, if they exist at all, often reside in a department separate from water operations, 

such as finance. Accessing this information requires interdepartmental communication 

and a specific query. If a given entity also operates wastewater, irrigation, or nonwater 

facilities, these must be separated from drinking water facilities. Multiple electric uses on 

a single meter also complicate the process. Electricity is usually billed monthly, and if the 

records are not already tabulated, annual totals require deliberate calculation, the effort of 

which increases with the number of facilities.  

Second, most water systems are not accustomed to regularly reporting energy use. 

Unlike water data, few regulatory agencies require such reporting. Requests for such data 

may be few and infrequent, leading to a custom query each time. Without clear 

motivation to do so, most water systems have not established mechanisms for regular 

energy tracking and reporting. 

The execution of this study confirmed the claims mentioned in the introduction: 
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that the lack of accessible data may well be the largest obstacle to understanding these 

water and energy relationships. The Illinois study concluded that “a consistent and 

comparable data collection methodology is needed across Illinois and nationally to gather 

and track water and energy data at the utility level” (ISAWWA 2012). The methods used 

here followed the Illinois study and may inform utility and regulatory policies for 

reporting. Such practices, when established, will benefit researchers, government 

agencies, and water utilities by providing a much-needed data stream (Chini & Stillwell 

2017). It is therefore recommended that water utilities begin tracking monthly water and 

energy observation for each facility, or annual system-wide data at a minimum. 

2.4.4 Applications 

The potential applications of this panel dataset are broad and will improve as it 

grows. Of particular interest are uses by federal agencies, researchers, local communities, 

and national security practitioners. 

The U.S. Geological Survey, U.S. Environmental Protection Agency, and U.S. 

Department of Energy periodically study water use, energy use, and the related 

infrastructure and operations. The methods and results of this study may inform future 

work by these and other agencies in national assessments on water and energy issues. The 

data may also be used to plan efficiency and conservation grant programs that consider 

local potential and electricity prices. The data challenges discussed above should be 

considered when forming policies for reporting, data management, and accountability by 

public water and wastewater utilities.  

The research community uses energy intensity to investigate many questions, of 

which the most common involve the impacts of urban growth or climate variability on 
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water and energy systems. In such studies, researchers use energy intensity in a system 

dynamics model, spreadsheet, or other tool, often as a single static input. The greater 

spatial and temporal detail of energy intensity offered here could improve the accuracy of 

study results and the validity of the insight they produce. Of emerging importance is the 

need to investigate the water–energy interconnections associated with smart networks 

where relationships between water and energy need to be defined with greater spatial and 

temporal resolution. 

Water system planning for local communities should carefully consider energy 

requirements to improve sustainability. This dataset can help water system personnel 

develop energy awareness, evaluate their energy footprints relative to similar systems, 

and identify best practices from systems that have successfully decreased their energy 

intensity. When combined with local electricity rates, energy intensity translates into 

energy costs for water provision similar to the work by Tidwell et al. (2014) and can 

inform planning decisions and cost-saving strategies. Detailed analysis of individual 

systems could lead to offset recommendations for net-zero energy. The discussion also 

suggests consistent energy reporting practices to facilitate benchmarking, tracking, and 

improvement of energy performance. In the absence of their own observational data, 

water utilities may apply the three constraints described above (location, source type, and 

size) to estimate a probable range of energy intensities based on system characteristics. 

This study confirms that U.S. public water supply relies heavily on the electric 

grid. This near-total dependence carries implications for national security: even a 

localized grid failure, whether accidental or intentional, can cause cascading failures in 

water services, public health, and the economy, effectively amplifying the impact of the 

 
 



46 

initial failure (Ouyang 2014, Chen et al. 2009). The energy intensities presented here 

indicate the water system’s degree of dependence on the grid and may be used in 

vulnerability assessments, critical infrastructure models, and other national security 

applications. 

2.4.5 Limitations and Further Work 

While it represents a significant improvement over previously available 

information, the dataset presented here seems to raise more questions than it answers. 

This study’s empirical approach differs from others on the subject, which have relied on 

estimates and engineering calculations to describe energy demands in the water sector. 

The dataset presented here is limited by its geographic coverage, the length of the 

historical records, and the coarseness of annual- and city-scale observations. 

Further work may add other data points of the same resolution, extend the records 

of existing locations, refine the spatial scale to subcity detail, or refine the temporal scale 

to seasonal or monthly intervals. An appropriate normalization is also needed that 

considers both internal and external factors to enable fair comparison of energy intensity 

among water systems. Above all, this research area could benefit from consistently 

reported and easily accessible energy data as described above. 

This dataset will enable further scientific analyses of the water–energy nexus and 

related areas. Specifically, further work should analyze the geographic drivers of energy 

intensity, be they climate, topography, or other external factors, as well as internal factors 

such as equipment, infrastructure, policies, and operational choices. Separate from the 

geographic drivers, the lengthier historic datasets compiled in this study may illuminate 

the causes of interannual variation of energy intensities at the same location. Ultimately a 
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model may be developed to estimate energy intensities as a function of a few key 

parameters. 

 
2.5 Summary and Conclusions 

This study compiled observational data on the energy requirements of public 

water supply in the United States, relying heavily on new data collected from 109 water 

systems. The resulting dataset helps bridge a longstanding data gap in the water–energy 

nexus, contributing considerable spatial and temporal resolution to the body of 

knowledge. The results show how the energy intensity of public water supply varies in 

time and space. 

The observations of energy intensity appear to be log-normally distributed. 

Western-U.S. water systems are generally more energy intensive and display a wider 

range of energy intensities than eastern ones. Energy intensity was observed to change 

over time, with mixed increases and decreases presumed to be the result of both internal 

and external factors specific to each system. The spatial and temporal variability 

observed here should be considered in future work by others. 

Three constraints were identified to help estimate the energy intensity of unknown 

water systems: location, water source type, and size. East–west differences are 

significant, as are local variations. Systems supplied by surface water have lower energy 

intensities and a narrower range of energy intensities than those supplied by groundwater 

and imported water. A size relationship was observed in which energy intensity tends to 

decrease with the size of the water system. A combination of the three constraints 

improves the estimation of unknown energy intensities over the broad averages 

previously available. 
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The survey indicated that many water systems struggled to produce energy data, 

even if all other data were readily available. This finding is consistent with that of similar 

surveys and prompts more consistent reporting practices. Collection of monthly, or at 

least annual, water and energy observations for each water facility is recommended to 

facilitate further work. 

The data and conclusions produced during this study can apply broadly to several 

stakeholders. Several applications were suggested for government agencies, researchers, 

local communities, and national security practitioners.  

2.6 References 

ANSI (American National Standards Institute), 2016. American National Standard for 
Electric Meters—Code for Electricity Metering, ANSI C12.1-2014. National 
Electrical Manufacturers Association, Rosslyn, Va. 

Barfuss, S.L.; Johnson, M.C.; & Nielsen, M.A., 2011. Accuracy of In-Service Water 
Meters at Low and High Flow Rates. Water Research Foundation, Denver. 

Barry, J.A., 2007. Watergy: Energy and Water Efficiency in Municipal Water Supply and 
Wastewater Treatment. Alliance to Save Energy, Washington. 
www.ase.org/sites/ase.org/files/watergy_handbook.pdf (accessed Apr. 19, 2017). 

Bazilian, M.; Rogner, H.; Howells, M.; Herman, S.; Arent, D.; Gielen, D.; Steduto, P., 
Mueller, A.; Komor, P.; Tol, R.S.J.; & Yumkella, K.K., 2011. Considering the 
Energy, Water and Food Nexus: Towards an Integrated Modelling Approach. 
Energy Policy, 39:12:7896. https://doi.org/10.1016/j.enpol.2011.09.039. 

Blanco, H.; Newell, J.; Scott, L.; & Alberti, M., 2012. The Energy and Emissions 
Intensity of Urban Water Supply Sources in Two Southern California Water 
Districts. Water Supply Scarcity in Southern California: Assessing Water District 
Level Strategies. University of Southern California, Los Angeles. 
https://sustainablecities.usc.edu/files/2015/01/Chapter-9.-The-Energy-and-
Emissions-Intensity-of-Urban-Water-Supply-12-19-p.pdf (accessed Apr. 19, 
2017). 

Bolognesi, A.; Bragalli, C.; Lenzi, C.; & Artina, S., 2014. Energy Efficiency 
Optimization in Water Distribution Systems. Procedia Engineering, 70:181. 
https://doi.org/10.1016/j.proeng.2014.02.021. 



49 

Carlson, S. & Wallburger, A., 2007. Energy Index Development for Benchmarking Water 
and Wastewater Utilities. AWWA Research Foundation, Denver. 

Chen, P.; Scown, C.; Matthews, H.S.; Garret, J.H.; & Hendrickson, C., 2009. Managing 
Critical Infrastructure Interdependence Through Economic Input-Output 
Methods. Journal of Infrastructure Systems, 15:3:200. 

Chini, C.M. & Stillwell, A.S., 2017. Where Are All the Data? The Case for a 
Comprehensive Water and Wastewater Utility Database. Journal of Water 
Resources Planning and Management, 143:3.  

Cooley, H.; Fulton, J.; & Gleick, P.H., 2011. Water for Energy: Future Water Needs for 
Electricity in the Intermountain West. Pacific Institute, Oakland, Calif. 

De Asís, M.G.; O’Leary, D.; Ljung, P.; & Butterworth, J., 2009. Improving 
Transparency, Integrity, and Accountability in Water Supply and Sanitation: 
Action, Learning, Experiences. The World Bank, Washington. 
https://doi.org/10.1596/978-0-8213-7892-2. 

EPRI (Electric Power Research Institute), 2013. Electricity Use and Management in the 
Municipal Water Supply and Wastewater Industries. Technical Report 
3002001433. EPRI, Palo Alto. 
https://publicdownload.epri.com/PublicDownload.svc/product=000000003002001
433/type=Product (accessed Apr. 19, 2017). 

EPRI, 2009. Program on Technology Innovation: Electric Efficiency Through Water 
Supply Technologies—A Roadmap. Technical Report 1019360. EPRI, Palo Alto, 
Calif. 
https://publicdownload.epri.com/PublicDownload.svc/product=000000000001019
360/type=Product (accessed Apr. 19, 2017). 

EPRI, 2002. Water & Sustainability (Volume 4): U.S. Electricity Consumption for Water 
Supply & Treatment—The Next Half Century. Topical Report 1006787. EPRI, 
Palo Alto, Calif, Calif. 
https://publicdownload.epri.com/PublicDownload.svc/product=000000000001006
787/type=Product (accessed Apr. 19, 2017). 

Giacone, E. & Mancò, S., 2012. Energy Efficiency Measurement in Industrial Processes. 
Energy, 38:331. https://doi.org/10.1016/j.energy.2011.11.054. 

Goldstein, N.C.; Newmark, R.L.; Whitehead, C.D.; Burton, E.; McMahon, J.; Ghatikar, 
G.; & May, D., 2008. The Energy-Water Nexus and Information Exchange: 
Challenges and Opportunities. International Journal of Water, 4:1–2:5. 
https://doi.org/10.1504/IJW.2008.018144. 

Griffiths-Sattenspiel, B. & Wilson, W., 2009. The Carbon Footprint of Water. River 



50 

Network, Portland. 
 
Healy, R.W.; Alley, W.M.; Engle, M.A.; McMahon, P.B.; & Bales, J.D., 2015. The 

Water–Energy Nexus—An Earth Science Perspective. U.S. Geological Survey 
Circular 1407. US Geological Survey, Reston, Va. 
https://dx.doi.org/10.3133/cir1407. 

 
ISAWWA (Illinois Section AWWA), 2012. Water–Energy Nexus Survey Summary 

Report. www.isawwa.org/resource/collection/82A33FB3-E26F-4EA1-932D-
866A9E8E264A/FY12-0077_ISAWWA_SURVEY_REPORT_REV_lowres.pdf 
(accessed Apr. 19, 2017). 

 
Jones, S.C.; Lindhardt, P.W.; & Sowby, R.B., 2015. Logan, Utah: A Case Study in Water 

and Energy Efficiency. Journal AWWA, 107:8:72. 
https://doi.org/10.5942/jawwa.2015.107.0115. 

 
Jones, S.C. & Sowby, R.B., 2014. Water System Optimization: Aligning Energy 

Efficiency, System Performance, and Water Quality. Journal AWWA, 106:6:66. 
https://doi.org/10.5942/jawwa.2014.106.0087. 

 
Klein, G., 2005. California’s Water–Energy Relationship. Final Staff Report CEC-700-

2005-011-SF. California Energy Commission. 
www.energy.ca.gov/2005publications/CEC-700-2005-011/CEC-700-2005-011-
SF.PDF (accessed Apr. 17, 2017). 

 
Ku, H.H., 1966. Notes on the Use of Propagation of Error Formulas. Journal of Research 

of the National Bureau of Standards, 70C:4:263. 
http://nistdigitalarchives.contentdm.oclc.org/cdm/ref/collection/p13011coll6/id/78
003 (accessed Apr. 17, 2017). 

 
Lane, J.L.; de Haas, D.W.; & Lant, P.A., 2015. The Diverse Environmental Burden of 

City-Scale Urban Water Systems. Water Research, 81:398. 
https://doi.org/10.1016/j.watres.2015.03.005. 

 
Maupin, M.A.; Kenny, J.F.; Hutson, S.S.; Lovelace, J.K.; Barber, N.L.; & Linsey, K.S., 

2014. Estimated Use of Water in the United States in 2010. US Geological Survey 
Circular 1405. US Geological Survey, Reston, Va. 
https://doi.org/10.3133/cir1405. 

 
Means, E., 2004. Water and Wastewater Industry Energy Efficiency: A Research 

Roadmap. AWWA Research Foundation, Denver. 
 
Mundt, N. & Dodenhoff, J., 2015. Water System Optimization: An Energy Efficiency 

View. ACEEE Summer Study on Energy Efficiency in Industry. 
http://aceee.org/files/proceedings/2015/data/papers/2-209.pdf (accessed Apr. 17, 
2017). 

 
 



51 

National Academies, 2013. Sustainable Energy and Materials: Addressing the Energy–
Water Nexus. Roundtable on Science and Technology for Sustainability, June 6, 
2013. 
http://sites.nationalacademies.org/cs/groups/pgasite/documents/webpage/pga_167
699.pdf (accessed Apr. 17, 2017). 

 
NYDEP (New York Department of Environmental Protection), 2016. Water 

Consumption in The New York City. NYC OpenData. 
https://data.cityofnewyork.us/Environment/Water-Consumption-In-The-New-
York-City/ia2d-e54m/data (accessed Dec. 5, 2016). 

 
Ouyang, M., 2014. Review on Modeling and Simulation of Interdependent Critical 

Infrastructure Systems. Reliability Engineering & System Safety, 121:43. 
https://doi.org/10.1016/j.ress.2013.06.040. 

 
Pate, R.; Hightower, M.; Cameron, C.; & Einfeld, W., 2007. Overview of Energy–Water 

Interdependencies and the Emerging Energy Demands on Water Resources. 
SAND 2007-1349C, Sandia National Laboratories. 
https://amfarid.scripts.mit.edu/resources/Media/Pate2007.pdf (accessed Apr. 17, 
2017). 

 
Plappally, A.K. & Lienhard, J.H., 2012. Energy Requirements for Water Production, 

Treatment, End Use, Reclamation, and Disposal. Renewable and Sustainable 
Energy Reviews 16:4818. https://doi.org/10.1016/j.rser.2012.05.022. 

 
PSCW (Public Service Commission of Wisconsin), 2016. Water Statewide Statistical 

Benchmarks. http://psc.wi.gov/utilityInfo/water/benchmark.htm (accessed June 2, 
2016). 

 
Ramos, H.M.; Vieira, F.; & Covas, D.I.C., 2010. Energy Efficiency in a Water Supply 

System: Energy Consumption and CO2 Emission. Water Science and Engineering, 
3:3:331. https://doi.org/10.3882/j.issn.1674-2370.2010.03.009. 

 
Saliba, C. & Gan, K., 2006. Energy Density Maps in Water Demand Management. 

E6109, Yarra Valley Water, Melbourne, Victoria, Australia.  
 
Sanders, K.T. & Webber, M.E., 2012. Evaluating the Energy Consumed for Water Use in 

the United States. Environmental Research Letters, 7:3. 
https://doi.org/10.1088/1748-9326/7/3/034034. 

 
Siddiqi, A. & Fletcher, S., 2015. Energy Intensity of Water End-Uses. Current 

Sustainable/Renewable Energy Reports, 2:1:25. https://doi.org/10.1007/s40518-
014-0024-3. 

 
Spang, E. & Loge, F., 2013. A Statistical Approach to the Embedded Energy in Water: 

Understanding Variance in Space and Time Across Hydraulic Systems. 

 
 



52 

ET12PGE5411, Pacific Gas & Electric Co., San Francisco, Calif. 
http://cwee.ucdavis.edu/wp-content/uploads/2013/10/04-27-2015-
ET12PGE5411_Embedded_Energy_in_Water.pdf (accessed Apr. 17, 2017). 

Stokes, J.R. & Horvath, A., 2009. Energy and Air Emission Effects of Water Supply. 
Environmental Science & Technology, 43:8:2680. 
https://doi.org/10.1021/es801802h. 

Tidwell, V.C.; Moreland, B.; & Zemlick, K., 2014. Geographic Footprint of Electricity 
Use for Water Services in the Western U.S. Environmental Science & 
Technology, 48:8897. https://doi.org/10.1021/es5016845. 

Tukey, J.W., 1977. Exploratory Data Analysis. Addison-Wesley, Reading, Mass. 

Twomey, K.M. & Webber, M.E., 2011. Evaluating the Energy Intensity of the U.S. 
Public Water Supply. Proceedings of the ASME 2011 5th International 
Conference on Energy Sustainability, ES2011-54165, 1735.  

UDEQ (Utah Department of Environmental Quality), 2015. Energy Efficiency Profile: 
Jordan Valley Water Conservancy District, Salt Lake City. 

USDOE (US Department of Energy), 2014. The Water-Energy Nexus: Challenges and 
Opportunities. DOE/Office of Energy Policy and Systems Analysis-002. 
www.energy.gov/sites/prod/files/2014/09/f18/2014-09-
05_Energy%20Water%20Nexus_SEAB%20Presentation.pdf (accessed Apr. 17, 
2017). 

USDOE 2012. 2011 Buildings Energy Data Book. http://en.openei.org/doe-
opendata/dataset/6aaf0248-bc4e-4a33-9735-2babe4aef2a5/resource/3edf59d2-
32be-458b-bd4c-796b3e14bc65/download/2011bedb.pdf (accessed Apr. 17, 
2017). 

USEPA (US Environmental Protection Agency), 2017. Energy Efficiency for Water 
Utilities. Sustainable Water Infrastructure. www.epa.gov/sustainable-water-
infrastructure/energy-efficiency-water-utilities (accessed Feb. 25, 2017). 

USEPA, 2013. Energy Efficiency in Water and Wastewater Facilities, EPA-430-R-09-
038. Local Government Climate and Energy Strategy Guides. USEPA, 
Washington. www.epa.gov/sites/production/files/2015-08/documents/wastewater-
guide.pdf (accessed Apr. 17, 2017). 

USGAO (US Government Accountability Office), 2011. Energy–Water Nexus: Amount 
of Energy Needed to Supply, Use, and Treat Water Is Location-Specific and Can 
Be Reduced by Certain Technologies and Approaches. GAO-11-225. 
www.gao.gov/products/GAO-11-225 (accessed Dec. 5, 2016).  



53 

Vilanova, M.R.N. & Balestieri, J.A.P., 2015. Modeling of Hydraulic and Energy 
Efficiency Indicators for Water Supply Systems. Renewable and Sustainable 
Energy Reviews, 48:540. https://doi.org/10.1016/j.rser.2015.04.024. 

Water in the West, 2013. Water and Energy Nexus: A Literature Review. Stanford 
University, Stanford, Calif. 
http://waterinthewest.stanford.edu/sites/default/files/Water-
Energy_Lit_Review.pdf (accessed Apr. 17, 2017). 

Welch, B.L., 1947. The Generalization of “Student’s” Problem When Several Different 
Population Variances Are Involved. Biometrika, 34:1–2:28. 
https://doi.org/10.1093/biomet/34.1-2.28. 

White, L., 2013. Water–Energy Research: Recommendations for Future Opportunities. 
GEI Consultants. www.allianceforwaterefficiency.org/Water-Energy-Research-
Needs-White-Paper.aspx (accessed Apr. 17, 2017). 

Wilkinson, R., 2000. Methodology for Analysis of the Energy Intensity of California’s 
Water Systems and an Assessment of Multiple Potential Benefits Through 
Integrated Water–Energy Efficiency Measures. University of California, Santa 
Barbara. 
http://large.stanford.edu/courses/2012/ph240/spearrin1/docs/wilkinson.pdf 
(accessed Apr. 17, 2017). 

Yonkin, M.; Clubine, K.; & O’Connor, K., 2008. Importance of Energy Efficiency to the 
Water and Wastewater Sector. Clearwaters [New York Water Environment 
Association] 38:1:12. www.nywea.org/clearwaters/08-1-spring/03-Energy.pdf. 

Yarosz, D.P. & Ashford, W., 2015. From Planning to Powerful Pumping. Water 
Environment & Technology, 27:8:58. 

Young, R., 2015. A Survey of Energy Use in Water Companies. ACEEE White Paper. 
American Council for an Energy-Efficient Economy, Washington.



CHAPTER 3 

STATISTICAL MODEL AND BENCHMARKING PROCEDURE 

FOR ENERGY USE BY PUBLIC WATER SYSTEMS 

3.1 Introduction 

Modern public water systems require energy to extract, treat, and deliver reliable, 

high-quality water to built environments. In the United States, this varies from 0.07 to 

3.04 kWh/m3 with an average of 0.48 to 0.53 kWh/m3 (Sowby and Burian 2017a, 2017b; 

DOE 2014; Twomey and Webber 2011; EPRI 2013). This energy-for-water relationship 

is one facet of the water–energy nexus, a broad research area that explores the 

interdependencies of water and energy resources. Water utilities’ energy footprints carry 

financial, environmental, and social impacts that need to be understood and managed 

sustainably. 

Despite the importance, little work has quantified or analyzed the energy 

requirements of public water supply, and many research needs are well documented. One 

recurring theme is the paucity of data, analysis, and models related to the water sector 

and its energy use (Healy et al. 2015; National Academies 2013; Water in the West 2013; 

Bazilian et al. 2011; Carlson and Wallburger 2007; Pate et al. 2007). In most cases, 

utility-level data are being collected but are not publicly accessible since few reporting 

systems or policies have been established—a curious deficiency in an era of “big data” 

(Chini and Stillwell 2017). Many of the available data are isolated observations, 
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aggregated averages, or calculations that do not satisfy the resolution and quality needed 

by data users in government, research, engineering, and professional associations who 

have repeatedly acknowledged these data gaps. The identification of similar needs by 

these diverse stakeholders testifies of their broad significance. 

This study addresses two specific problems. The first is the difficulty of 

quantifying water system energy requirements. Unlike water use, energy use is not 

typically reported by water utilities, so the data must be collected individually, as in 

Sowby and Burian’s (2017a, 2017b) survey. If the data even exist, this primary data 

collection can be time consuming since most water utilities are unaccustomed to such 

requests. For these reasons, the literature on this subject has been sparse to date. Past 

efforts include average or categorized energy intensities as reported by Twomey and 

Webber (2011), Young (2015), EPRI (2013), DOE (2012), and a more recent survey 

(Sowby and Burian 2017a, 2017b). Until regular reporting is mandated and the process is 

streamlined, collecting energy data from a large number of water systems is daunting. A 

worthy contribution would be the development of an accurate statistical model, based on 

the observations already available, that could estimate water system energy use as a 

function of a few key variables and therefore substitute for otherwise infeasible primary 

data collection. 

The second problem is the difficulty of fairly comparing energy use among 

diverse water systems. Even if a water system’s energy use is known, judging its 

performance and comparing it to other water systems is another matter. Water systems 

and their energy consumption vary greatly for several reasons, some of which are beyond 

the systems’ control. A small system blessed with clean, abundant surface water will 
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have a markedly different energy footprint than a large system that pumps deep 

groundwater; comparing the two directly is inappropriate. Even within the same system 

the energy intensity can change over time, further complicating fair comparisons (Sowby 

and Burian 2017a). There is, therefore, a need to identify and quantify the factors that 

influence water systems’ energy use. Researchers have supposed that water source type, 

utility size, conveyance distance, climate, treatment technology, infrastructure age, and 

topography are important factors, but little research has quantified the relative effects of 

each of these (Wakeel et al. 2016; Young 2015; Tidwell et al. 2014; Water in the West 

2013; Twomey and Webber 2011; Klein 2005). One notable study is that of Carlson and 

Wallburger (2007), which explored relationships between a water utility’s energy use and 

its water use, pumping horsepower, pipe length, and elevation difference. Once 

identified, such factors should be developed into a benchmarking tool that enables a more 

equitable comparison for the water system and its peers. 

This study’s objective was to produce an empirical model that can estimate water 

systems’ energy use as a function of a few easily obtained, system-specific and 

geographic variables and to apply the model for energy benchmarking of water systems, 

thereby advancing the solution of the two aforementioned problems. 

3.2 Methods 

3.2.1 Definitions 

Here, as in Sowby and Burian’s (2017a, 2017b) study, a public water system or 

water utility delivers potable water to the public (more than 25 people). This definition 

follows that of the Safe Drinking Water Act. The entity may be publicly or privately 

owned. Most of the systems in this study are municipal drinking water systems. 
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“Energy” as used here means electricity. Other fuels are occasionally used, but 

since water utilities consume energy predominantly as electricity (Twomey and Webber 

2011; Carlson and Wallburger 2007), the energy data used in this study are limited to 

electricity. 

 
3.2.2 Data Sources 

Annual water and energy use data originated from a survey of 108 U.S. water 

utilities by Sowby and Burian (2017a, 2017b), which represents water services for about 

14% of the U.S. population. The survey also indicated the primary water source type and 

service population. Literature review, logical suppositions, and a few unique theories 

informed the selection of additional explanatory variables. To the survey dataset were 

added the following data, most of which are publicly available: 

 Further categorization of water source types into pumped surface water, 

gravity-fed surface water, groundwater, and imported water based on 

follow-up inquiries with the survey respondents. 

 Average annual precipitation (PRISM 2016a, 2016b). 

 Average annual temperature (PRISM 2016a, 2016b). 

 Minimum vapor pressure deficit (PRISM 2016a, 2016b). 

 The county’s population density (USCB 2012). 

 The county’s population growth between the 2000 and 2010 censuses 

(USCB 2012). 

 The state’s average electricity price in 2014 (EIA 2016). 

 The water system’s approximate elevation (USGS 2016). 

 The standard deviation of elevation within each water system’s estimated 
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service area, as computed from the National Elevation Dataset (USGS 

2016). 

 The city’s presence on a list of 50 greenest U.S. cities by Popular Science

(Svoboda 2008).

 Results from the 2012 U.S. presidential general election (Guardian 2012).

For spatial data, values were extracted by water system location; for tabular data, 

the values were linked directly. Note that the foregoing variables fall into internal (e.g., 

system-specific) and external (e.g., climate) variables. Table 3.1 presents summary 

statistics.  

3.2.3 Preliminary Investigation 

The authors previously attempted three modeling approaches, which ultimately 

did not meet the study objectives. Since the main dataset was an unbalanced panel 

(describing water and energy use in the same water systems over multiple years), panel 

models with fixed and random effects were tried first (Hsaio 2003). The fixed-effects 

panel model was rejected since it did not consider time-invariant explanatory variables 

like many of those in Table 3.1. The random-effects panel model was inconsistent since 

its composite errors were correlated with the explanatory variables (failed Hausman test). 

A third model, spatial interpolation by kriging, was discarded because the underlying 

semivariogram was weak, showing little correlation between a water system’s energy 

intensity and that of its neighbors, somewhat defying the first law of geography (Stein 

1999; Tobler 1970). These three attempts and further literature review led to the final 

linear model presented here. 
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3.2.4 Data Partitions 

The observations were randomly partitioned into a training dataset (80%) and 

validation dataset (20%). Model development used only the training dataset; the 

validation dataset was hidden until after the model was developed and then tested against 

the model. This process helps avoid overstating the accuracy of the predictions and 

provides an independent measure of error which previous models have not reported.  

3.2.5 Transformation 

As in Carlson and Wallburger’s (2007) work, the range of water utility sizes 

prompted a logarithmic transformation of both water use and energy use. The 

transformation produces a strong linear relationship between the two that serves as the 

basis for further specification. By linearizing the data, the transformation overcomes 

some of the weaknesses of the attempts described above. Since the relationship is nearly 

linear, ordinary least squares (OLS) regression was selected for modeling using the cross-

section for the most recent year in the panel dataset. 

Figure 3.1 shows the transformed datasets of Carlson and Wallburger (2007) and 

Sowby and Burian (2017a, 2017b) in the same units. The range, slope, intercept, and R2 

are very similar, demonstrating that the two studies, in which all data were self-reported 

and otherwise could not be verified, corroborate each other. 

3.2.6 Model Specification 

Specification followed three minimum criteria: 

1. The absolute value of all individual test statistics exceeds 2.0. This

corresponds to a Type I error probability of about 0.05 or less and follows
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Figure 3.1 Comparison of Two Datasets on Water System Energy Use 

(Carlson and Wallburger [2007] figure reprinted with permission. © Water Research 
Foundation.) 

 

Carlson and Wallburger’s (2007) stepwise method. 

2. The adjusted R2 exceeds 0.87, offering an improvement in fit over Carlson 

and Wallburger’s (2007) model. This metric describes the overall fit on a 

scale from 0 to 1.  

3. The model’s root mean square error (RMSE) does not exceed 1.79, 

offering an improvement in accuracy over Carlson and Wallburger’s 

(2007) model (when converted to kilowatt-hour basis). This metric 

describes the overall accuracy of the predictions relative to the range of 

observed values.  

All model criteria had to be balanced. For example, models without an intercept 

produced a near-perfect adjusted R2 (> 0.99) but yielded unacceptably high errors (RMSE 

> 2.5). A desirable but optional feature was the similarity of RMSE between the training 
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and validation datasets when the model was applied, which would indicate that the model 

is not prone to overfitting. 

3.3 Results and Discussion 

3.3.1 Model Results 

The model, presented in Table 3.2, includes five statistically significant variables 

plus an intercept. All test statistics exceed an absolute value of 2.0, the adjusted R2 value 

is 0.9447, and the RMSE is 0.4989, satisfying all three minimum requirements. Figure 

3.2 shows model residuals for each variable. Applying the model to the validation dataset 

yields an RMSE of 0.5183, which closely matches the model dataset’s RMSE of 0.4989, 

demonstrating that the model performs well on an independent sample. 

Table 3.2 

Model Results for Natural Logarithm of Water System Energy Use 

Variable Coefficient 
Standard 

Error 
Test 

Statistic 
Natural logarithm of annual water use in cubic meters 0.8934 0.0287 31.10 
Indicator of gravity-fed water supply (>50%) −0.9494 0.2140 −4.44 
Indicator of imported water supply (>50%) 1.2759 0.2726 4.68 
Average annual precipitation in centimeters −0.0054 0.0021 −2.62 
Average annual temperature in degrees Celsius 0.0360 0.0164 2.20 
Intercept 0.9713 0.3991 36.66 

R2 0.9480 
Adjusted R2 0.9447 
Root Mean Square Error 0.4989 
Number of Observations 86 
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(a) Natural logarithm of annual energy use (kWh)   (b) Natural logarithm of annual water use (m3) 

(c) Indicator of gravity-fed surface water (d) Indicator of imported water 

(e) Average annual precipitation (cm) (f) Average annual temperature (°C) 

Figure 3.2 Model Residuals 
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3.3.2 Magnitudes and Signs of Coefficients 

The size of the water system, expressed here as the natural logarithm of its water 

use, is the most influential factor and correlates positively with energy use. This finding 

matches that of Carlson and Wallburger (2007). The two extreme water supply types, 

gravity and imported, have negative and positive coefficients, respectively. Gravity-fed 

water requires less pumping and therefore less energy, while imported water requires 

more energy for its conveyance over greater distances and elevations. This variable 

explains the low energy intensities observed in the water systems of Portland, Denver, 

New York, and Boston—all which have high-head surface water sources—and the high 

energy intensities observed in southern California, where water is conveyed hundreds of 

miles over hundreds of meters of elevation gain before arriving at the point of use.  

Precipitation, which shows a negative coefficient, could indicate the wetness of a 

location and its tendency to have abundant surface water, which is generally more 

accessible and less energy intensive than groundwater or imported water. Temperature 

exhibits a positive coefficient, suggesting that warmer regions require more energy for 

water supply, perhaps because of greater water demand relative to cooler areas and the 

need for more marginal water sources. Together, these findings support the theories 

mentioned earlier about what factors influence a water system’s energy footprint. 

 
3.3.3 Residuals 

The residuals in Figure 3.2 show random, symmetric dispersion without clear 

correlation to the parameter values, indicating that linear regression is appropriate. While 

the indicator variables equal to 1 in Figure 3.2(c) and (d) are relatively few, these were 

nonetheless found to be statistically significant according to the criteria presented earlier. 
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3.3.4 Fit and Accuracy 

The adjusted R2 value of 0.9447 indicates excellent overall fit. The model predicts 

the natural logarithm of the water system’s energy use within −7% to +10% when using 

the training dataset, and within −6% to +5% when using the validation dataset. The 

RMSEs for the training and validation datasets are nearly equal—0.4989 and 0.5183, 

respectively—demonstrating that the model performs equally well on an independent 

sample. The measures of adjusted R2 and RMSE and the provision of an independent 

error estimate are substantial improvements over previous models. 

3.3.5 Limitations and Future Work 

Examining the observations that differ most from their predictions tells where the 

model still does not perform well. The differences tend to decrease with system size, but 

the correlation is weak. No common characteristics were found that would immediately 

suggest an additional variable. Future work may refine this model and/or produce new 

models with greater power and accuracy to explain how much energy a water system 

consumes. Further, many water systems’ energy footprints are shrinking as a result of 

improved energy management practices (Sowby 2016; see Appendix A), reinforcing the 

need to continually collect data on this subject. 

3.4 Applications 

3.4.1 Energy Use Estimation 

Since energy data in the water sector are difficult to obtain (Chini and Stillwell 

2017; Sowby and Burian 2017a), the model offers an alternative to resource-intensive 

primary data collection as a means to estimate water system energy footprints. The only 
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multivariable model found in the literature review was that of Carlson and Wallburger 

(2007), which relied on detailed water system characteristics and/or other obscure data 

that limit its applicability, especially to studies of numerous systems. The model 

presented here overcomes these challenges by using only basic water system 

characteristics and publicly available climate data. It may be used, at least initially, to 

estimate a water system’s energy use until firm data become available. 

3.4.2 Energy Benchmarking 

As discussed earlier, one of the difficulties in developing energy benchmarks and 

related sustainability metrics for water systems is the great variability in system 

characteristics that influence their energy use and complicate fair comparisons. The 

model overcomes much of this difficulty by quantifying the effects of a few pertinent 

characteristics that would otherwise render the comparison inappropriate if not 

impossible. 

The natural logarithms of energy use are nearly normally distributed with mean 

15.59 and standard deviation 2.16. Figure 3.3 shows the actual observations and a 

cumulative normal distribution curve. Both are reversed so a low energy use corresponds 

to a higher percentile. For the purposes of benchmarking, the distribution is considered to 

be exactly normal. 

Consider a water system of given characteristics and an observed energy use 

whose natural logarithm is 𝑦𝑦. Given these characteristics, the model will predict the 

natural logarithm of energy use for a theoretical water system with the same 

characteristics, called 𝑦𝑦�. The ratio 𝑦𝑦/𝑦𝑦�  indicates how much higher or lower the actual 
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Figure 3.3 Water System Energy Use Distribution 

energy use is relative to the predicted value. There also exists a sample mean, 𝑦𝑦�mean, 

which may be used to scale the ratio to the sample. 

Using these three numbers, one may compare the water system to its theoretical 

peers: 

𝐸𝐸adj = 𝑦𝑦�mean
𝑦𝑦
𝑦𝑦� (3.1) 

where 𝐸𝐸adj is the natural logarithm of adjusted energy use, 𝑦𝑦�mean is the sample mean 

(here, 15.59), 𝑦𝑦 is the natural logarithm of the observed energy use, and 𝑦𝑦� is the natural 

logarithm of the predicted energy use (or, more precisely, the expected energy use of a 

theoretical water system with the same characteristics). The value of 𝐸𝐸adj corresponds to 

a percentile ranking on the curve of Figure 3.3, assuming that the normal distribution 

applies to the theoretical peers as well as to the overall sample. This method follows that 

of Carlson and Wallburger (2007). 

0

20

40

60

80

100

8 10 12 14 16 18 20 22 24

Pe
rc

en
til

e 
Sc

or
e 

ln(Energy Use [kWh]) 

Normal Distribution

Observed Data



68 

As an example, consider the water system described in Table 3.3 that delivered 

102,865,000 m3 of water in one year. The natural logarithm of its observed energy use 

(20,379,000 kWh) is 16.83. Using the same characteristics, the model predicts a value of 

17.21. The ratio of these two is 0.9779, indicating that the observed energy use is 

somewhat less than predicted. Multiplying by the sample mean 15.59, the adjusted 

natural logarithm of energy use is 15.25. On the curve of Figure 3.4, this value 

corresponds to the 57th percentile, or a score of 57 out of 100 among its peers, slightly 

above average. 

Applying the benchmark procedure to Sowby and Burian’s (2017b) dataset, 

several dissimilar water utilities actually have the same score. For example, the water 

systems serving Boise, Denver, and Tampa—although they differ in size, topography, 

water supply, and climate—all score 55. Likewise, water systems serving Houston,  

 
Table 3.3 

Water System Energy Benchmarking Example 
 

Variable Value Coefficient Product 
Natural logarithm of annual water use in cubic 
meters 

 18.45  0.8934 16.4828 

Indicator of gravity-fed water supply 1 −0.9494 −0.9494 
Indicator of imported water supply 0 1.2759 0.0000 
Average annual precipitation in centimeters 18.29 −0.0054 −0.0985 
Average annual temperature in degrees Celsius 22.3 0.0360 0.8039 
Intercept 1 0.9713 0.9713 
   Sum = 17.21 
Natural logarithm of observed energy use (𝑦𝑦) 16.83   
Natural logarithm of predicted energy use (𝑦𝑦�) 17.21   
Sample mean (𝑦𝑦�mean) 15.59   
Natural logarithm of adjusted energy use (𝐸𝐸adj) 15.25   
Percentile score 57/100   
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Figure 3.4 Benchmark Application Example 

Milwaukee, and St. Louis all score 46. Both cases demonstrate how the model normalizes 

great differences and identifies groups of similar performers. 

This method can also be used to evaluate what magnitude of energy reductions 

are needed to achieve a higher score (thus defining an energy savings goal) or what 

impact proposed energy management projects will have. The water system may then 

pursue the energy savings using power company programs, qualified consultants, and/or 

published energy management guidance (AWWA 2016; Jones and Sowby 2014; UDDW 

2014; Liu et al. 2012; NYSERDA 2010; EPA 2008). Energy management in the water 

sector is a major sustainability opportunity, and many water systems have already 

achieved significant energy savings (Sowby 2016; see Appendix A), while new research 

and resources will continue to promote energy reductions.  

Jordan Valley Water Conservancy District, for example, serves the greater Salt 

Lake City area. Using this benchmarking procedure and data provided by the District 
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 (Todd Schultz, pers. comm.), its 2013 score would have been 37. In 2014 the District 

began an energy management program that delivered verified energy savings (Sowby et 

al., forthcoming). The District’s 2014 and 2015 scores increased to 41 and 42, 

respectively, illustrating the incremental improvement likely attributed to the program. 

3.5 Summary and Conclusions 

Based on a recent survey and public datasets, a model of water system energy use 

was developed that offers improvements in accuracy and applicability over previous 

models. While more sophisticated methods and more exact models may follow, this study 

identified a few important internal and external characteristics—water use, water source 

type, precipitation, and temperature—that are easily obtained. The model can provide 

reasonable estimates of energy use where primary data collection is infeasible. Since it 

explains much of the variation in energy use among water systems, the model is 

conducive to energy benchmarking, peer comparisons, and energy management planning. 
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CHAPTER 4 

HIGH-RESOLUTION ENERGY INTENSITY MODELING 

TO IMPROVE WATER DISTRIBUTION SYSTEM  

PERFORMANCE 

4.1 Introduction 

Water distribution systems require energy to extract, treat, and deliver reliable, 

high-quality water. This energy use has financial, environmental, and social impacts that 

suggest a need to manage it sustainably. Energy can consume up to 40% of a water 

utility’s operating budget; this proportion is expected to increase with scarcer water 

supplies and stricter water quality standards (EPA 2016). Environmental impacts include 

the emissions and ecological considerations associated with generating power for water 

services (Lane et al. 2015; Ramos et al. 2010; Griffiths-Sattenspiel and Wilson 2009; 

Stokes and Horvath 2009). On the social side, stakeholders expect their water utility to 

use energy and other resources wisely while fulfilling a social contract to provide a vital 

public service in a monopolized market (De Asís 2009).  

Water utilities can improve their sustainability by identifying and implementing 

the most energy-efficient scheme for water delivery that still satisfies the prescribed level 

of service and water quality (Jones and Sowby 2014). The motivation for water utilities 

to reduce their energy use is clear and much guidance has appeared in recent years 

(AWWA 2016; UDDW 2014; Liu et al. 2012; NYSERDA 2010; EPA 2008). Some of the 
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most common practices include: 

 Determining baseline energy intensity and monitoring regularly

 Auditing water and energy use simultaneously

 Upgrading aged or improperly designed equipment

 Prioritizing efficient water sources

 Prioritizing efficient conveyance paths

 Increasing storage utilization to balance loads

 Adjusting pressure-reducing valves to minimize unnecessary flow

 Eliminating redundant pumping

 Shutting down nonessential facilities (permanently or seasonally)

 Controlling water loss

While this general guidance is helpful, each water distribution system is unique 

and still requires individual attention and analysis to identify and implement energy 

management practices. However, the optimum scheme is difficult to determine, 

especially for complex systems with many pressure zones, water sources, and pumping 

facilities; it is not always clear how water uses correspond to energy inputs. For the 

purposes of improving energy performance, these fluxes should be computed and 

understood, and then tested against alternatives to find, for example, an acceptable 

operational scheme that minimizes energy use. Water system energy management efforts 

“require clear, defensible calculations of the energy embedded” and “must account for 

energy inputs at all stages of the water life cycle” in order to be justified (Spang and Loge 

2015). Beyond the practical application to water utilities, several research spaces could 

benefit from this capability, such as those involving water/energy optimization, system 
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dynamics models, life cycle assessment, electric grid reliability, water supply reliability, 

and the broader water–energy nexus. 

The concept of energy intensity is central to understanding this problem. In 

Wilkinson’s (2000) words, “Energy intensity is the total amount of energy … required for 

the use of a given amount of water in a specific location.” It is an energy footprint 

specific to water. Also called embedded energy or specific energy, it is the ratio of energy 

inputs to water volume, often expressed in kilowatt-hours per million gallons (kWh/MG). 

The locations for which energy intensity is computed may be entire water distribution 

systems, as by Sowby and Burian (2017a, 2017b); pressure zones, as by Saliba and Gan 

(2006) and Spang and Loge (2013, 2015); or individual end users, as by Siddiqi and 

Fletcher (2015). There is also a temporal dimension where energy intensity varies over 

time at each of these spatial scales (Sowby and Burian 2017a; Spang and Loge 2013, 

2015). Note that “energy intensity” should not be confused with “energy grade line” or 

similar energy-related terms used in hydraulic engineering. 

Studies of “embedded water” or “virtual water” employ a related approach to 

determine the amount of water used to make common products like meat, clothing, and 

lumber by considering each step of the associated supply chain (Hoekstra 2011; Hoekstra 

2003; Hoekstra and Hung 2002). The concept was first developed to quantify and map 

international water dependencies and to understand how water-scarce countries could 

provide water-intensive goods to their inhabitants and has been the foundation of 

recommendations for private, public, and nonprofit organizations to reduce their water 

impacts.  

Similarly, mapping energy intensity in water distribution systems—where the 
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product of interest is drinking water and the embedded resource is energy—could inform 

recommendations to improve performance and reduce energy impacts, as well as to better 

understand system behavior. However, looking at the product (water delivered to the 

user) does not tell the whole story. The embedment is to be determined spatially and 

temporally across an entire water distribution system by computing each energetic path 

from beginning to end. For a simple system with only one pressure zone and one water 

source, the determination is almost trivial, but for large systems with many sources, 

facilities, and pressure zones where waters of differing energy intensity move and mix, 

the determination is resource intensive. For this reason, there is an “absence of studies 

capturing the spatial aspect of the [water–energy] nexus problem” (Vakilifard et al. 2017) 

and almost all previous studies of the subject stop short of linking energy impacts to site-

specific water use (Spang and Loge 2015). 

The difficulty of computing energy intensity increases with both system 

complexity and level of spatial and temporal detail for three reasons. First, the degree of 

hydraulic and energetic connectivity increases from the national scale to the water utility 

scale. Second, each step in the process adds energy intensity to the same volume of water, 

so the energy intensity accumulates along the water supply chain from source to use. This 

is a one-way operation, and energy intensity cannot be subtracted (except in the rare case 

of energy recovery). Finally, as the water moves through the system, it may mix with 

other waters of differing energy intensity, losing any uniqueness carried from a given 

source. At a service connection, for example, the energy is embedded before the water 

arrives, and since energy has no physical signature, unlike mass constituents, it cannot be 

observed in a water sample. Given flow and pressure, one may calculate the theoretical 
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energy required, but nothing in the calculation indicates whether the supply is gravity fed 

(with an energy intensity near zero) or pumped several times to arrive there. The 

accumulated energy intensity can be determined only by modeling. One must therefore 

know the water’s history: its origins and paths and the energy intensities associated with 

them.  

To illustrate the complexity, consider a parcel of deep, brackish groundwater. A 

well extracts the parcel, adding energy in the process. The parcel then undergoes 

treatment, which adds more energy. A pump station then adds energy to pressurize it for 

service. The parcel is the same size, but energy has been added three times already. After 

pumping, the parcel travels through the distribution system where it encounters another 

parcel from a different water source with a different energy intensity, and the two blend 

instantly. Farther on, a third parcel blends in. The resulting parcel, equal in volume to the 

original one, is delivered to and consumed at a commercial property. How much energy 

was embedded in the consumed parcel? In other words, how much energy was expended 

to deliver that parcel of water to the commercial property? Since the parcel’s history is 

known, one may determine its energy intensity by analyzing the energy inputs along each 

of the three paths. This exercise does not work in reverse: nothing about the consumed 

parcel itself informs the determination. The question is only answerable when the 

hydraulic pathways and the associated energy inputs are known.  

This is different from the basic energy calculations built into most hydraulic 

modeling software, which compute pump energy intensities from user inputs and report 

overall system energy consumption from pump runtimes. These calculations only give 

the energy intensity of pumps and do not provide energy intensities for other processes 
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(like treatment) or indicate how much energy is required for water delivery at points 

within the system. Beyond these basic features, a more insightful method is needed to 

model energy intensity everywhere in the system over time and produce useful data and 

visualizations. Once the energy intensity of water delivery at a particular point and its 

variation over time are understood, a modeler may begin exploring alternatives by which 

to conserve energy. 

Some inspiration may be drawn from the field of energy density maps or 

community energy mapping. This tool combines disaggregated or mildly aggregated 

energy consumption data with spatial data and, in the past few years, has become a useful 

tool for community energy planning and sustainability engagement (Webster et al. 2011; 

Reul and Michaels 2012; Ea Energy Analyses and GRAS 2012; Gilmour and McNally 

2010). Reul and Michaels (2012) observed that energy mapping reveals “energy gushers” 

where a large potential exists for energy savings. Gilmour and McNally (2010) stressed 

the importance of visual techniques for understanding the impacts. 

Saliba and Gan (2006) and Spang and Loge (2013, 2015) applied similar concepts 

to study energy intensity differences within an individual water distribution system at the 

pressure-zone level using facility energy data and geographic information systems (GIS). 

Both enabled energy calculations at finer geographic resolution to prioritize site-specific 

water and energy conservation actions that would not have emerged from a lumped, 

system-wide analysis that obscures significant temporal and spatial effects. However, 

their spatial analyses did not penetrate to individual nodes and links and did not capture 

energy intensity changes over time.  Currently there is no mechanism to model energy 

intensities at fine scales in water distribution systems. Such a mechanism must consider 
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the entire supply chain from energy demand to water delivery, a chain that becomes 

increasingly interconnected at finer scales. 

Water and energy demands are generally well understood when considered in 

isolation, but the processes that “convert” energy to water (i.e., use energy to provide 

water) are not. The main gap here is understanding what occurs in the black box between 

energy demand and water delivery: the operation of the water system’s facilities. Water 

demand, assumed to be fixed for a given scenario, triggers an operational scheme (one of 

many potential operational schemes), which triggers energy demand (reacting to the 

system’s needs); in turn, energy provision enables system operation, which enables water 

delivery. This framework explains the service chain from energy demand to water 

demand, but there is as yet no mechanism to model it or determine how energy is 

translated through the system and ultimately reappears as embedded energy during water 

delivery. 

One specific research question to be answered is, how does energy intensity 

within the water distribution system respond to operational changes such as water source 

selection and facility shutdowns, or the other energy management practices listed earlier? 

Another is, how can such analysis inform decisions to implement energy management 

practices and operate more sustainably? This study builds on past efforts and addresses a 

key research gap by proposing, documenting, demonstrating, and validating a high-

resolution technique for modeling energy intensity within a water distribution system.  

4.2 Methods 

One gap noted above is the lack of a mechanism to model the exact paths by 

which energy is embedded in water via the system, between energy demand and water 
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delivery. The combination of two existing tools and the concept of “conservation of a 

general property” bridges this gap. For individual water systems, tools called “energy 

maps” quantify each water facility’s energy requirements and have been effective in 

informing operational decisions to reduce energy use (McWilliams et al. 2017; Sowby et 

al. 2017; Jones and Sowby 2014). An energy map characterizes water facilities by their 

energy use and thereby links them to the electric grid. Equipped with an energy map, a 

water system may make data-driven decisions about prioritizing the least-energy-

intensive water sources and other facilities in a given demand scenario, or add energy 

considerations to existing operational criteria for water quality, water rights, seasonal 

availability, and other constraints. It is much like currency exchange, where each facility 

in the system has a different exchange rate: kilowatt-hours may be traded for gallons 

anywhere in the system, but certain locations may offer a better deal. Going the other 

direction, extended-period hydraulic models, e.g., EPANET (Rossman 2000), simulate 

water system behavior and link a water system’s facilities to individual water demands. 

As such, they are important for considering the system’s constraints when testing 

alternatives. 

The important common component between the energy map and the hydraulic 

model is the operation of water system facilities, being the means by which energy inputs 

are exchanged for water outputs (Figure 4.1). Combined, the two tools offer a framework 

for modeling energy-for-water interactions and a novel way to track energy from its 

origin in the grid, through its embedment into water via operation of the water system, 

and to its fate among water users. Using the energy map inside the hydraulic model 

completes the picture of modeling interactions along both hydraulic and energetic 
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Figure 4.1 Energy-for-Water Framework 

 
pathways. A corresponding framework could be developed for the opposite side of the 

nexus, water-for-energy. 

Since energy becomes embedded with the water, the method requires that energy 

flows be modeled at the same resolution as hydraulics. For this reason, the authors 

propose that energy intensity be considered a conservative general property. This idea 

rests on two assumptions: 1) that energy intensity is a property concentration of energy 

per volume, analogous to a chemical concentration of mass per volume; and 2) that 

energy intensity is conservative, with no internal growth or decay. These assumptions are 

discussed in Appendix D. 

With energy intensity treated as a conservative general property, the approach 

leverages existing modeling technology and significantly streamlines energy analysis in 

complex systems. Since the hydraulic model already computes the hydraulics for 

transport and mixing, the modeler may develop an energy intensity simulation by 

specifying energy intensities instead of chemical concentrations and by setting the proper 

reaction terms, initial conditions, and boundary conditions. The energy intensity of each 

energy-using element in the model must be known and defined. This requires selecting an 

energy node and specifying the source quality for each as described below.  
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4.2.1 Modeling Requirements 

With energy intensity as a conservative general property, it follows that the same 

principles govern its transport, mixing, and fate in the system. Modeling this behavior 

requires that the energy intensities input into the model match the model element, 

whether it is a single pump or an entire facility or process; the absolute scale is not 

important.  

The method requires an extended-period simulation (EPS) hydraulic model of the 

system whose completeness, calibration, and accuracy are satisfactory. Unlike water 

quality, additional calibration of energy intensity results is impossible since the quantities 

cannot be determined by sampling and since any conservative constituent has, by 

definition, no reaction and therefore no reaction coefficients to adjust (Clark 2012). The 

results can be determined only by modeling and depend entirely on the energy inputs and 

the underlying hydraulics, so both must be sound. The results may, however, be 

confirmed by observing energy performance before and after implementing changes 

identified from the modeling. 

The method proposed here is compatible with major hydraulic modeling software 

packages. For simplicity, this study uses EPANET, a free computer program developed 

by the U.S. Environmental Protection Agency (Rossman 2000). Terminology and 

procedures may differ among other packages, but the same concepts apply. 

4.2.2 Energy Intensity Determination 

In a water distribution system, each energy-using element—a pump station, a 

well, or a treatment facility, for example—has an energy intensity. The energy intensities 

of any energy-using elements must be determined for input as “source quality” in the 
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model. This exercise is straightforward, and three methods are common. 

First, where water and energy records are available for the same time period, the 

element’s average energy intensity for that time period may be calculated as the ratio of 

energy usage to water volume and input directly. This is the preferred method since it 

captures observed behavior. Second, if the total head and wire-to-water efficiency are 

known, as from a pump curve, the expected energy intensity may be computed from first 

principles (see Appendix D). A third method, applicable to water treatment plants, is to 

look up energy intensities in a library of plant features published by EPRI (2013). In any 

case, an element’s energy intensity may change over time depending on equipment, 

operations, and other conditions (Spang and Loge 2013), so the value(s) chosen for 

model input should correspond to the time period(s) being studied. 

Since energy intensities, and not energy grade lines, are of interest here, it is not 

appropriate to include “losses” in the hydraulic sense. Energy intensity refers to the one-

way embedment of energy inputs into the water system, not the hydraulic behavior. 

Energy losses in the hydraulic sense are not subtracted from the energy intensity. The 

total energy intensity should already include these losses, much like a pump design 

should anticipate dynamic head losses. 

Table 4.1 summarizes the options for determining energy intensity inputs for 

modeling. A selection of typical energy intensities for common facilities based on EPRI 

(2013) is found in Appendix D. 

4.2.3 Energy Nodes 

For each energy-using element, the modeler must select a node at which to 

“inject” the energy intensity. This will be called the energy node. As a consistent  
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Table 4.1 

Methods for Determining Energy Intensities for Water Supply 

Pump Plant Custom 

Direct Input 
(use observed data) 

1. Select control volume (facility of interest)
2. Select period of interest
3. Observe energy use and water volume
processed in control volume during period of 
interest 
4. Compute: 𝐸𝐸𝐸𝐸 = Σ𝐸𝐸

Σ𝑉𝑉

Calculation 
(use equations) 

1. Determine total
dynamic head in feet (h) 
2. Determine typical
efficiency as decimal (η) 
3. Compute: 𝐸𝐸𝐸𝐸 = 3.14ℎ

𝜂𝜂

(see Appendix) 

Not applicable Not applicable 

Library Lookup 
(use literature) 

Not applicable 

1. Determine average
plant flow rate 
2. Determine unit
processes 
3. Look up in EPRI
(2013) Table 4-2 

Not applicable 

Notes: 
1. Units: Energy assumed to be in kilowatt-hours (kWh), water assumed to be in million gallons (MG), and energy 
intensity assumed to be kilowatt-hours per million gallons (kWh/MG). 
2. Observations of energy use will likely include nonhydraulic loads like lighting, heating, cooling, and controls.
3. Calculations do not include the extraneous energy uses in Note 2, which must be added for complete energy intensity.
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practice, it is recommended that the energy node be at or immediately downstream of any 

location where energy is added to the system. This applies whether the element adds 

energy and produces water (e.g., a well) or only adds energy (e.g., a pump station 

between pressure zones). See Figure 4.2 for examples.  

4.2.4 Energy Intensity Entry 

After identifying energy nodes, the modeler must specify each one’s energy 

intensity as the source quality. This is a set of nodal properties that define the 

concentration, behavior, and time pattern. Energy intensity (kWh/MG) is entered in place 

of the concentration. This value must correspond to the energy intensity of the element 

being modeled and will be constant in the simulation unless an optional time pattern (a 

user-defined set of multipliers) is specified. The source type should be specified such that 

it adds a fixed concentration to the resulting inflow concentration at the node; in 

EPANET this is a flow-paced booster (Rossman 2000). Since energy intensity is a 

property concentration and is cumulative through the water delivery process, this option 

applies to all energy nodes and represents the continuous “dosing” of energy intensity 

into the system.  

Figure 4.2 Energy Node Examples 
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4.2.5 Simulation Setup 

Once the foregoing steps are complete and energy nodes and source qualities are 

defined, the modeler may set up the energy intensity simulation. Since energy intensity is 

modeled as a conservative constituent, only the bulk and wall coefficients (which would 

otherwise govern in-pipe chemical reactions) are of interest, and both are zero because 

there are no reactions. The reaction order and the limiting concentration are irrelevant but 

should be set to zero to avoid confusion. These are the same values one would specify for 

a nonreactive tracer as suggested by Rossman (2000) and Clark (2012). No reaction is 

occurring in the fluid; the energy intensity is merely being transported and mixed in the 

network.  

The simulation’s total duration should be long enough, usually several days, to 

allow energy intensities to stabilize or reach a repeating pattern. Especially in extensive 

systems and/or those with significant storage volumes, the simulation must be long 

enough for water produced during the simulation to reach all points of the system. The 

user must interpret the concentrations according to the units in which they were defined 

(e.g., kWh/MG).  

4.2.6 Visualization and Interpretation 

Once the simulation is run, the modeler may display the results in the network 

map with user-defined colors and value ranges. This produces system-wide maps of 

energy intensity at every time step, thereby illustrating the temporal and spatial variation 

of energy intensity within a water distribution system with node-and-link resolution. The 

data may be exported to a geographic information system (GIS) for further analytical and 

cartographic options. Only basic visualizations are used here, and more advanced ones 
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are reserved for future research. 

4.3 Case Study 

4.3.1 Study Model 

A case study with an actual water distribution system will demonstrate the 

modeling method and its value in answering the research questions for a specific water 

distribution system, with generalizable applications to others.  

The study subject is the water distribution system of Eagle Mountain City, Utah, 

USA. The system provides water for indoor and outdoor uses to a population of 29,000 in 

residential and rural settings. The system is laid out in three pressure zones (nos. 1–3, 

from lowest to highest). Four wells (nos. 1, 2, 3, and 5) and one wholesale connection 

(which must be pumped) supply all water to Zone 2. Two boosters move water from 

Zone 2 to Zone 3; pressure-reducing valves (PRVs) allow water to descend from Zone 2 

to Zone 1. Five water tanks provide equalization storage. The City provided a calibrated 

EPANET hydraulic model, flow records, and energy use data during a recent project with 

engineering consultant Hansen, Allen & Luce (2016) and subsequently authorized their 

use in this research. The hydraulic model contains about 1,300 links and 1,000 nodes, and 

its average water demand is 6,500 gpm. Figure 4.3 shows the system as defined in the 

model.  

4.3.2 Energy Analysis Preparation 

The hydraulic model had already been calibrated and used specifically for energy 

analysis, so its application to this research is appropriate. Following a sensitivity analysis 

described in Appendix D, the authors judged the model to be adequate for understanding  
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Figure 4.3 Eagle Mountain Water System Model 
 

the proposed technique. Energy intensity inputs were found to be the most influential 

parameters, with a linear effect that underscores the importance of accurate 

determination. 

The first step was therefore to determine the energy intensities of all relevant 

facilities—the energy map. For wells, the energy intensities were determined by Method 

A, Direct Input, in Table 4.1. The average energy intensity for each facility was  
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calculated from historic records by dividing its total energy use by its total water use over 

a one-year period. Monthly data were available, but billing periods between water and 

electricity could not be matched exactly for an accurate ratio, so the annual average was 

chosen as a representative value. For boosters, in which flows were not metered, the 

energy intensities were determined by Method B, Calculation, in Table 4.1, using the 

design heads and efficiencies from their respective pump curves. Table 4.2 shows the 

results.  

Table 4.2 indicates that Well 1 is the least-energy intensive well; the wholesale 

connection is comparable. The next-best is Well 3, which requires about 30% more 

energy for the same amount of water. Just having this energy map—a normalized 

quantification of each facility’s energy use—is immensely valuable. This case study goes 

one step further by using this information inside the hydraulic model, which enables 

calculation and visualization of energy intensities throughout the distribution network.  

Since the energy-using facilities of Table 4.2 are represented as pumps in the 

model, the energy nodes were chosen as the first nodes downstream of the pumps. At 

Table 4.2 

Water Facility Energy Intensities 

Facility 
Pressure Zone 

Served 
Average Energy Intensity 

(kWh/MG) 
Well 1 Zone 2 1,692 
Well 2 Zone 2 2,844 
Well 3 Zone 2 2,712 
Well 5 Zone 2 2,487 
Wholesale Zone 2 1,618 
Booster 1 Zone 3 820 
Booster 2 Zone 3 816 
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each of these locations the source quality was set using the energy intensity values in 

Table 4.2 with the type option set to flow-paced booster. No time pattern was specified 

since an average (static) energy intensity is to be used. The bulk and wall reaction orders, 

their coefficients, and the limiting concentration were set to zero as for a conservative 

constituent or as placeholders for irrelevant parameters. After a few preliminary runs, a 

simulation duration of 144 hours was chosen to allow sufficient time for results to 

stabilize—a common practice in water quality modeling (Haestad Methods et al. 2003). 

To illustrate how the method can help optimize energy use within the system,  

consider a node in Zone 3 where the objective is to meet its water demand using the least 

possible amount of energy. Since the water distribution system offers many hydraulic and 

energetic paths by which water could arrive at the node at any given time, modeling is 

required to determine the actual paths and how much energy is expended along them 

from source to delivery. Each hydraulic path has a corresponding energetic path; the 

objective is to find the one with the lowest total energy intensity. One possible path to the 

node is from the wholesale connection and Booster 1, a path with a total energy intensity 

of 2,434 kWh/MG; another is Well 3 via Booster 1, with a total energy intensity of 3,532 

kWh/MG. The result may be a combination of several paths over time. The potential for 

multiple paths of significantly different energy intensity, combined with the fact that the 

paths are not known before modeling, suggests an opportunity to reduce energy use by 

choosing a more efficient path.  

Hydraulic modeling helps determine the source of the water arriving at the node 

at each time step and, consequently, the energy intensity carried with it. It is the time-

averaged energy intensity which is to be reduced, representing a decrease in energy use 
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while delivering the same amount of water. In this example, the reduction may be 

accomplished by prioritizing the path of lowest energy intensity from among the possible 

choices in Table 4.2. The “best” path minimizes the sum of energy intensities along the 

water supply chain within the system’s constraints defined in the model as well as 

external factors like water rights and seasonal availability. 

Two major opportunities previously identified by Hansen, Allen & Luce (2016) 

and implemented by the City (Cascade Energy 2017)—a prioritized water source scheme 

and the shutdown of nonessential facilities (listed earlier among other energy 

management practices)—were selected to illustrate the method, validate the method, and 

answer the research question for this water distribution system. The prioritized water 

source scheme was selected iteratively based on the energy map of Table 4.2. The model 

controls were modified such that less-energy-intensive sources were activated before 

more-energy-intensive sources. The acceptability of each iteration was assessed by 

checking pressures at all nodes. If the resulting pressures did not satisfy the City’s level 

of service (minimum 30 psi during peak instantaneous demand and minimum 40 psi 

during peak day demand), the scheme was rejected. This process continued until an 

acceptable alternative scheme was found that balanced the prioritized sources with the 

system’s level of service. The shutdown of the nonessential facilities (a booster station 

and tank) was modeled by permanently closing the pump and pipe that represents it and 

removing all controls that would trigger its operation.  

Two scenarios were prepared—existing and proposed—to study how energy 

intensity in Eagle Mountain’s system responds to these operational changes. 
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4.3.3 Model Analysis and Discussion 

Figures 4.4 and 4.5 show the energy intensity of water passing each node and link 

in Eagle Mountain’s water system under existing and proposed conditions, respectively, 

at 144 hours. The figures highlight the spatial variation of energy intensity within a water 

distribution system at even finer levels than those studied by Saliba and Gan (2006) and 

Spang and Loge (2013). Similar figures may be produced for any time step. The figures 

illustrate how electricity originating in the grid is translated through the operation of the 

water system and reappears embedded as energy intensity at every point in the system. 

In Figure 4.4, patches of energy-intensive water appear in the northern and eastern 

portions of the system. This is a combination of the water supply from Well 2 (the most 

energy-intensive water source) and the boosting operations into Zone 3 (which add 

energy intensity to water produced in Zone 2). Although Well 2 is the nearest water 

source to this part of the system and would logically be the best choice, it requires more 

energy than any other. Modeling shows that the other water sources are underutilized and 

could replace much of Well 2’s production.  

Another opportunity is associated with Tank 5, which is hydraulically located in 

Zone 3 but serves no connections yet. Water is pumped there via Booster 2 and then 

returns through PRVs into Zone 2, effectively being pumped in circles. (Note that while 

energy in the form of pressure is released through the valves, the energy intensity from 

pumping remains embedded in the water.) Citing a need for storage capacity during peak 

demand that could only be provided by pumping to Tank 5, the City had been operating 

this way for some time. Further modeling, both here and by the consultant, indicated that 

other tanks could provide adequate storage, that this extra pumping was not necessary,  
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Figure 4.4 Energy Intensity under Existing Conditions 

Figure 4.5 Energy Intensity under Proposed Conditions 
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and that Tank 5 and Booster 2 could be shut down until they are truly needed. The 

shutdown of these two facilities is, admittedly, an unsophisticated solution and a reversal 

of the City’s previous engineering efforts to establish them. Still, it represents an 

opportunity to discontinue an unnecessary energy use, and such elimination of waste  

should be commended. 

These two opportunities—prioritizing low-energy-intensity water sources and 

shutting down unnecessary facilities—were modeled in the proposed scenario presented 

in Figure 4.5. Well 2 was demoted and other sources, particularly Well 1, were favored. 

The model runs such that the wells are dispatched in order of increasing energy intensity. 

Further, Booster 2 and Tank 5 were closed so the other tanks could provide the needed 

equalization storage. In Figure 4.5, the area of high-energy-intensity water which was so 

extensive in the existing scenario is now confined to Zone 3. Even without Well 2 and 

Tank 5, the same amount of water is delivered with adequate pressure throughout the 

system. Having based this simulation on an existing acceptable model, one can be 

confident that the proposed operation is feasible. 

As in detailed community energy mapping, Figures 4.4 and 4.5 exemplify how 

such an approach can expose local behavior not otherwise apparent (Reul and Michaels 

2012) and how “the ability to illustrate the results … offers a powerful way to understand 

the impacts” (Gilmour and McNally 2010). 

Figure 4.6 shows the energy intensity of water arriving at a node in Zone 2 that is 

particularly affected by the changes. As discussed earlier, time series analysis of energy 

intensity is rare. This example illustrates how it can vary over time at small scales and 

how scenarios may be compared at specific locations. Integrating energy intensity over  
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Figure 4.6 Energy Intensity at Node in Zone 2 

time yields a total energy use (the area under each curve of Figure 4.6); the area between 

the curves represents energy savings.   

For existing conditions in Figure 4.6, the energy intensity at the node averages 

2,735 kWh/MG and varies between 2,443 kWh/MG and 2,844 kWh/MG. The variation is 

attributed to the contributions of different water sources at different times; the upper limit 

equals the energy intensity of Well 2 and corresponds to times when all water reaching 

the node originates from Well 2. Trace simulations confirm this and further indicate that 

on average, Well 1 contributes 2% of the node’s supply; Well 2, 91%; Well 3, 0%; Well 

5, 0%; and wholesale, 7%. Note that the energy intensities of Table 4.2, when weighted 

by these percentages as in Eq. D.11, approximate the average result; using energy 

intensity in the place of water quality reduces the calculations to one simulation without 

requiring traces from each potential source. 

For proposed conditions in Figure 4.6, the energy intensity at the node averages 

2,036 kWh/MG. This constitutes a 26% reduction from existing conditions while still 

satisfying demand and pressure requirements. This is accomplished by fully utilizing 
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Well 1 and the wholesale supply—baseloading the least-energy-intensive water 

sources—and activating additional facilities only when necessary. 

This option could have been chosen without modeling using only the energy map 

of Table 4.2, but hydraulic modeling adds two important features. First, the benefit of the 

path (the energy savings) cannot be determined without first modeling existing conditions 

and comparing the difference in energy intensity with the proposed operation. Second, 

merely selecting a path from Table 4.2 does not guarantee that the path is hydraulically 

feasible or that it will satisfy demands and pressures—criteria that need to be evaluated 

with the hydraulic model. Integrating the energy map with the available hydraulic model 

overcomes these two challenges. 

The model’s built-in energy calculations report an average daily energy use of 

3,350 kWh for the existing scenario and 2,977 kWh for the proposed scenario, a 

reduction of 11%. The model’s calculations are based on user-defined pump 

characteristics (in this case, the actual pump curves) and are separate from the energy 

intensity simulation. These calculations confirm that the difference in energy intensities 

between the two extended-period scenarios translates into energy savings reported by 

other means.  

The proposed operation provides more than just energy benefits. Average 

pressure fluctuation (the difference in maximum and minimum pressure during the 

simulation period) across all nodes in the existing scenario is 29 psi; in the proposed 

scenario, it is 12 psi, indicating that the changes allow water to be delivered with shorter 

paths, larger pipes, less friction loss, and/or lower velocities and facilitate better system-

wide hydraulic performance. Average water age at the end of the 144-hour simulation 
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period is 33 hours in the existing scenario; in the proposed scenario, it is 30 hours, 

suggesting that the changes slightly improve water quality. This is yet one more 

demonstration that energy efficiency, hydraulic performance, and water quality can 

exhibit the positive synergistic effects described by Jones and Sowby (2014), rather than 

being competing goals. 

Hansen, Allen & Luce’s (2016) review of Eagle Mountain’s water system did not 

use this energy intensity modeling approach, but the approach identifies, visualizes, and 

quantifies many of the same findings. Eagle Mountain ultimately implemented most of 

the consultant’s recommendations, including the two major opportunities to prioritize 

low-energy-intensity water sources and to shut down Booster 2 and Tank 5. As a result, 

over a one-year period following implementation of these noncapital improvements, the 

system observed a 7% reduction in energy use (454,000 kWh) relative to the baseline 

condition (Cascade Energy 2017). By comparison, the energy reduction predicted by this 

modeling method was 11%. This analysis was specific to daily summer operations, so the 

comparison to a yearlong energy management program is not direct; still, it validates the 

approach since the same changes resulted in energy reductions quantified by both 

modeling and measurement.  

4.4 Results and Discussion 

By showing energy intensities at all locations and multiple time steps, the case 

study with the new method helps visualize, justify, and quantify two opportunities 

identified from a previous study. Further, it successfully predicts energy savings similar 

to those actually achieved when the recommendations were implemented. 

These findings suggest that the method, which combines an energy map with a 
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hydraulic model and treats energy intensity as a conservative general property, is an 

effective analysis tool. The technique effectively models energy intensity interactions and 

their response to changing operational schemes and designs. As such, it can inform 

energy management decisions at the facility level where they are most relevant by 

offering modeling and insight at finer scales than previously available.  

 The case study revealed several generalizable insights about energy use in water 

distribution systems. Returning to the research question posed earlier, the selection of 

water sources and the shutdown of nonessential facilities significantly impacts a water 

system’s energy profile for the given demand scenario. While this has been observed 

generally elsewhere, the new modeling technique exposes the previously hidden local 

impacts of these actions in a specific system. Each facility has its own energy intensity 

characteristics, which, when coupled with its hydraulic characteristics, influence the 

acceptability of the overall water supply scheme and the associated energy loads. 

Improving this scheme reduces energy use and has the potential to improve water quality 

and hydraulic performance concurrently. Due to the highly interconnected nature of water 

distribution networks, the transport and fate of energy intensity are complex 

phenomena—even in a medium-sized water distribution system with just a few sources 

and pressure zones—and require the same level of modeling as water quality simulations 

to fully describe the impacts of system operations on energy use, especially when 

investigating proposed changes. The linkage of facility operation to energy use is not 

always direct, local, or isolated but can influence even distant parts of the system and the 

operation of other facilities. These interactions are not apparent in coarser models. As in 

Spang and Loge’s (2013, 2015) and Thayer’s (2015) work, the case study shows a clear 
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pattern of increasing energy intensity in successively higher pressure zones. The findings 

confirm that because of the unique hydraulics and topology of each water distribution 

system—and even within its individual pressure zones— “no one-size-fits-all energy 

intensity can be given to a gallon of water” (Spang and Loge 2015). Like water quality, in 

most cases the results cannot be figured by mere intuition, even with intimate knowledge 

of the system (AWWA 2012). The method illuminated energy intensity behavior in one 

system with sufficient accuracy to support recommendations that resulted in verified 

energy savings. 

Just as hydraulic modeling has developed to sufficient levels of detail and has 

become an indispensable tool for designing, planning, and operating water distribution 

systems for adequate pressure and water quality, the proposed method of modeling 

energy intensity could become a valuable complement to evaluate and improve energy 

performance of the same systems. While the technique is novel, it promises value in 

several research and practice areas similar to the advances of extended-period hydraulic 

modeling and water quality simulations. 

As in Spang and Loge’s (2013, 2015) analysis, the new method offers “a way to 

represent the spatially and temporally dynamic characteristics of water system energy 

intensity,” but with even higher resolution made possible by the use of hydraulic 

modeling. It connects energy intensity to water use and maps the flow of energy through 

the actual water infrastructure, not just the lumped system or pressure zone. This provides 

a more detailed characterization of energy use in a water distribution system that can 

inform site-specific energy management and water conservation measures that consider 

timing, topography, hydraulic behavior, and system constraints. 
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Several research gaps remain to be filled. Being limited to a specific system and a 

specific demand scenario, the case study did not capture all potential energy management 

opportunities, system operations, or analysis cases. The method should be applied to 

other systems and the energy performance results should be documented to further 

validate the method and its value in informing specific energy-savings measures, as well 

as to develop examples of the many insights the method can provide in other situations. 

Of the many possible operational schemes that could meet the water demand, the case 

study found one that was better, in terms of energy use, than the existing scenario. Many 

others could exist that may be even better than this one, and the search for the best 

scheme then becomes an optimization problem. While full-scale optimization was not 

attempted here, the modeling technique could be linked to algorithms that optimize 

energy intensity at specific points or times, or even over an entire water distribution 

system or among several systems in a regional water supply. One particular question to 

test is whether, for a given water demand scenario, there is at least one water supply 

scheme with the minimum energy requirement. The case study did not consider the 

impact of peak power demand, an important operational constraint for power utilities and 

an expensive line item for water utilities. Studies optimizing both energy reduction and 

power reduction are recommended. This case study used static, average energy intensities 

from aggregated annual data, admittedly the lowest-resolution parameter. Future work 

might explore the value of more explicit and time-sensitive ways to define energy 

intensity inputs—for example, by linking to system telemetry/SCADA as done by Spang 

and Loge (2013, 2015). The results of the sensitivity analysis in Appendix D, in which 

energy intensity inputs were the most influential parameters, support this 
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recommendation. Water cost and other conservative properties associated with individual 

processes and facilities may be modeled by the same principles if they can be reasonably 

normalized by water volume and expressed as a concentration, e.g., dollars per gallon. 

Used this way, the method could inform water conservation or water loss control 

activities with greater spatial sensitivity to save water, energy, and money where they 

matter most. This study used only very basic visualizations; investigating the value and 

application of more advanced visualization techniques, perhaps involving time series, 

heat maps, and spatial interpolation, is recommended. The method’s applications to aging 

infrastructure analysis, water and energy system reliability, life cycle assessment of water 

and wastewater systems (Lundie et al. 2004; Sahey and Kennedy 2007; Mahgoub et al. 

2010; Venkatesh and Brattebø 2011), system dynamics models, the broader water–energy 

nexus, and related research areas should also be explored.  

4.5 Summary and Conclusions 

This research introduced a method for modeling energy intensity as a 

conservative general property in water distribution systems. The method leverages water 

quality simulations built into existing hydraulic modeling software to streamline the 

computation and visualization of energy intensities with previously unavailable detail. 

The approach informs energy management decisions at relevant scales to improve overall 

water system sustainability. 

A case study with a real water distribution system demonstrated the method’s 

value by highlighting two particular energy management opportunities previously 

recommended by a consultant and implemented by the water utility. Both modeling and 

implementation predicted energy reductions, validating the modeling technique used 
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here. The rapid computation of system-wide energy results facilitated the testing of an 

alternative operational scheme and confirmed its feasibility by quantifying local 

reductions in energy intensity resulting from the proposed changes. The model also 

indicated simultaneous improvements in hydraulic performance and water quality. From 

these results, the authors conclude that the method is an effective analysis tool for 

targeted energy management in water distribution systems. 

Further applications of network-scale energy intensity modeling are 

recommended to further develop the technique, explore the insights it can produce, and 

apply these insights to improve water distribution systems’ energy performance and 

overall sustainability, as well as to link them to other research areas. 
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CHAPTER 5 

 
 

GENERAL CONCLUSION 

 
5.1 Summary 

 This research program produced useful data, models, and analysis on public water 

systems and their energy use. The work was driven by a lack of such resources in both 

scholarly literature and engineering practice, representing research needs widely 

acknowledged by diverse stakeholders. The products of this research program will inform 

the planning, design, and operation of sustainable public water systems from an energy 

perspective. 

  
5.2 Conclusions 

Filling a critical data gap, the survey of Chapter 2 collected data to define the 

energy requirements of 109 U.S. public water systems. The results show that their energy 

intensities range from 250 to 11,500 kWh/MG, with a volume-weighted average of 1,809 

kWh/MG. These energy intensities are approximately log-normally distributed. 

Significant geographic differences were found, with fundamentally higher energy 

intensities in the western United States than the eastern United States proven by a 

statistical test. Systems supplied by surface water are the least energy intensive, while 

those supplied by groundwater or imported water require more energy to deliver the same 

amount of water. This finding validates, on a national scale, what others have observed 
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from more limited observations about the relative energy intensity of different water 

source types. The analysis found that energy intensity tends to decrease with water 

system size, showing an economy of scale consistent with those already observed in 

water and wastewater treatment processes. The survey revealed mixed interannual 

variations in energy intensity that need to be investigated further. The geographic and 

temporal variability of water system energy intensities should be considered in future 

modeling and research. One nontechnical finding was that the energy data were difficult 

to obtain, even when water data were plentiful, underscoring the need to better integrate 

water and energy data in the future to overcome a significant data gap. Providing a 

consistent characterization of energy-for-water demands, the dataset will find uses in 

water system planning, national water and energy evaluations, and national security 

applications. The data are publicly available on GitHub and Zenodo at 

http://doi.org/10.5281/zenodo.1048275. 

From this set of empirical data, the statistical model in Chapter 3 was developed 

to estimate a water utility’s energy use as a function of a few readily accessible variables. 

The most important factors influencing the energy use were found to be water system 

size, water source type, average precipitation, and average temperature, constituting a 

combination of both internal and external variables. Past studies have theorized that these 

factors may be influential, but this is the first quantitative substantiation of such claims. 

The statistical model is more accurate than previous models and has the added benefit 

that the variables it uses are more accessible, facilitating its application, especially to 

studies of many water systems. By considering such variables, the model overcomes 

much of the difficulty heretofore encountered in energy benchmarking of water systems, 
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where comparisons are otherwise unfair and inappropriate. A benchmarking application 

was described as a planning tool for energy management in water systems. 

Having produced a strong dataset and statistical model, the research extended 

these analyses to the subsystem scale where water–energy interactions are complex and 

require spatially and temporally sensitive modeling. The method described in Chapter 4 

combines two existing tools—energy maps and hydraulic models—in a new application 

to describe the entire energy-for-water service chain. Treating energy intensity as a 

conservative water quality constituent—a property concentration of energy input per unit 

of water—enables the application of extended-period hydraulic models to simulate its 

behavior in a given water distribution system, a necessary step given the complexity and 

interconnectivity of water distribution networks. The method produces visualizations and 

data that can inform energy management decisions at relevant scales, and since the results 

are coupled with an established hydraulic model, one may also test alternatives and be 

confident in how the system will respond to a potential change. In a case study with a real 

water utility, the method effectively illuminated several inefficiencies (and their 

solutions) that would not have emerged in a lumped system-wide analysis. The model 

indicated a reduction in energy use concurrently with improvements in water quality and 

hydraulic performance, exemplifying the positive synergy of the three parameters. The 

model identified energy savings similar to those actually achieved in the same water 

utility during a yearlong energy management program, thereby validating the method and 

its value for providing specific and actionable energy management insights. 
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5.3 Applications 

Since the energy intensity data presented in Chapter 2 represent empirical energy-

for-water linkages and their statistical properties are well defined, researchers may input 

them into models of the water–energy–food nexus, life cycle assessments of water 

utilities, critical infrastructure evaluations, and similar studies requiring such factors 

relating water use to energy use. Policymakers and regulators may use the data to plan 

energy conservation and grant programs targeting the water sector, as well as to develop 

further guidance and best practices. Power companies—which as monopolies are 

mandated to implement energy efficiency programs and use the least-cost resource—will 

recognize in these data the significant electric loads associated with water services and 

can deploy demand-side management programs targeting the most energy intensive 

and/or largest water systems. They may also find value in the site-specific observations 

and statistical characterizations when preparing demand projections specific to the water 

industry. Likewise, water managers may estimate their future energy demands and/or 

costs according to water use projections, or use the data as a baseline for energy 

management activities. 

The statistical model documented in Chapter 3 enables researchers to more 

accurately estimate a water utility’s energy use with a few accessible variables. Like the 

survey dataset, it may find a place in many types of studies, especially those of national 

scale with a large number of water utilities that would otherwise be characterized without 

considering important internal or external factors. The model and benchmarking 

procedure may be adopted by policymakers and regulators to monitor water systems’ 

performance and prescribe certain energy management practices. This could become part 
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of state and federal reporting requirements, which would also serve to collect additional 

data. The tool may also interest power companies and their demand-side management 

programs serving water systems so the power companies can direct their efforts at the 

most fruitful opportunities. Individual water utilities may use the tool to benchmark their 

current energy performance, set a specific goal to improve, quantify the energy reduction 

needed to reach the goal, and monitor their performance over time. Such activities may 

be done in cohorts of several water systems—especially small ones with limited 

resources—to provide peer support and accountability. The benchmark score could be an 

important metric for demonstrating progress toward sustainability goals when reporting 

to boards and the public, reported annually to match the time scale for which the model 

was designed. 

 The tools and methods of Chapter 4 are most valuable to individual water systems 

since the outcomes are, by design, system-specific. Water utilities and their engineers 

may incorporate this new type of analysis aimed at energy management into their existing 

engineering, planning, and modeling practices. Hydraulic modelers, who are already 

familiar with a system’s operation and its hydraulic model, are the best suited to 

implement this method and may be supported by operators and senior staff to ensure 

accuracy of the outcomes and feasibility of the alternatives. This is most effective for 

extended-period models calibrated to common operational schemes, e.g., summer or 

winter. Coupled with monthly energy and water observations to compute energy intensity 

for each facility, the hydraulic model becomes a vehicle to display and quantify energy 

use in great detail, leading to informed decisions about deliberate energy management, 

whether through operational adjustments or capital projects. Power companies may be 
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interested in this tool as part of broader demand-side management and incentive 

programs that already serve water utilities as a means to generate further ideas for energy 

savings or peak load reductions. 

5.4 Limitations and Further Work 

While the energy intensity survey of Chapter 2 produced the largest known 

dataset of its kind, it misses a large portion of U.S. water suppliers. The survey compiled 

data from over 100 public water systems, but many tens of thousands exist in the United 

States alone. The dataset should be expanded through the collection of additional city-

scale data, especially for small systems, which constitute a large portion of the remainder. 

Understanding of how water systems’ energy intensities vary over time is also weak. 

Most of the available data, including those presented here, are static and do not describe 

potentially important seasonal or interannual differences and, where time series do exist, 

they lack context and metadata sufficient to investigate the causes of such changes. For 

these reasons, specific study of time-series energy intensity is recommended. With the 

existing dataset, there may be opportunities to uncover further spatial patterns by 

combining energy intensity with or normalizing it by population, elevation, distance to 

water source, or water system age. The size relationship, in which larger water systems 

have lower energy intensities, should be examined to determine particular causes, 

whether technological (e.g., economy of scale through larger infrastructure), financial 

(e.g., ability to select better equipment and engineering services), or organizational (e.g., 

greater availability of employee resources to manage energy). Energy intensity on its own 

does not describe the cost, source, or emissions of the energy used. Studies of such topics 

must therefore consider additional factors such as cost per kilowatt-hour depending on 
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local rates and carbon emissions per kilowatt-hour depending on fuel type, which, when 

coupled with energy intensity, further characterize the nature of the energy being used for 

public water supply. This is an important step for evaluating the climate impacts 

associated with public water supply and the potential for reducing emissions through 

water conservation. City-specific data on energy-for-water intensities outside the United 

States are even more sparse, presenting an opportunity for global efforts to quantify these 

uses and help water systems operate efficiently, especially in developing countries where 

water and power services are limited. 

 The statistical model and benchmarking tool presented in Chapter 3 offer 

substantial improvements over previous resources, in terms of both accuracy and 

usability, but could still be refined. For a lack of time series data, they do not include 

time-sensitive variables that could influence energy intensity. The model currently uses 

an annual basis, which may be too long to observe progress toward goals, so future work 

should seek to define benchmarks at monthly scales for more prompt feedback. Through 

additional variables or more advanced statistical techniques, further refinement of 

empirical models relating water and energy is recommended, as well as broader 

implementation of energy benchmarking tools to help water systems conserve energy. 

Such models may also be integrated with system dynamics models and other meta-

models of water and energy systems. Additional variables to consider are hydraulic head 

(between the natural water source and its end uses), raw-water quality (which dictates the 

level of treatment required), and aging infrastructure. 

The area ripest for further work is the method of high-resolution energy intensity 

modeling described in Chapter 4. The case study was limited to two proposed actions in a 
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single water system and did not capture all potential energy management actions. Further, 

it was limited by the annual resolution of the energy intensity inputs. Future work should 

explore the value of using higher-resolution energy intensity data (minimum monthly 

scale, with potential for near-real-time SCADA linkages), the potential for optimization 

problems, advanced visualization techniques, and more explicit financial comparisons 

that consider peak power demand and other energy pricing schemes. The technique could 

also inform more spatially sensitive analysis of water conservation potential, recognizing 

energy use and cost as important general properties conveyed with the water, to aim 

conservation activities at the areas where the associated energy or cost are the greatest. 

The technique may also apply to evaluations of a water system’s physical condition and 

the corresponding effect on energy use. The development of this new high-resolution 

technique suggests research applications in life cycle assessment, water system reliability, 

and the broader water–energy nexus. Additional system-specific studies are 

recommended to build the body of knowledge about energy flows through water systems, 

explore energy management opportunities, and apply the technique to improve water 

system sustainability. 

Most of all, the literature review and this entire research program confirmed that a 

lack of adequate data is one of the primary barriers to further scientific study in this field 

and that integrated water and energy data reporting is needed at both state and federal 

levels. In Utah, this would require coordination among the Division of Water Rights, 

which has the legal authority to collect water use data; the Division of Water Resources, 

which evaluates and reports these data; the Division of Drinking Water, which regulates 

public water systems and promotes their efficient use of energy through a specific 
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program; and the Governor’s Office of Energy Development, which supports policies for 

energy efficiency and conservation. In this scheme, policies would originate from the 

latter, supported by the three water divisions and the legislature. The Division of Water 

Rights would request annual (monthly if possible) energy use along with water use in its 

annual data collection effort (as is done voluntarily in California). Since water utilities 

often struggle to find their energy use data, local power providers like Rocky Mountain 

Power may facilitate the process by offering, with permission, energy use data for each 

water system they serve. The Division of Water Resources would maintain the data, and 

the Division of Drinking Water would analyze, interpret, and use the data to support its 

energy efficiency program and make the data available to local practitioners. 

(Incidentally, this theoretical multiparty process further underscores the fragmentation of 

management and data surrounding water and energy discussed earlier). Similar data 

collection programs would need to be developed in other states. A federal agency, 

perhaps the U.S. Environmental Protection Agency, Department of Energy, or Geological 

Survey, could then compile the data nationwide, similar to the U.S. Geological Survey’s 

National Water Use Information Program. The growing dataset would become a resource 

for exploring further energy-for-water relationships and answering the associated 

management, policy, and engineering questions. 

 

 



APPENDIX A 

REVIEW OF POTENTIAL AND ACTUAL 

ENERGY MANAGEMENT RESULTS 

IN PUBLIC WATER SYSTEMS1 

A.1 Introduction 

The water–energy nexus has received considerable attention in the past 10 years. 

Much of the work has focused on the water intensity of energy generation, local studies 

of energy intensity for water services, and the research needs in this emerging field. Less 

work has addressed energy efficiency in the water sector.  

Water services are a substantial component of a state’s or country’s energy 

consumption. Public water and wastewater utilities consume 2% of all U.S. energy, or 

about 2 quadrillion BTU annually (Sanders and Webber 2012). Utah, the country’s 

second-driest state, expends about 7% of its energy on water supply (Larsen and Burian 

2012; UDWR 2012). In California, water consumes 19% of the state’s electricity and 

30% of its natural gas, underscoring the significance of the water sector’s role in energy 

consumption, especially amid California’s current multiyear drought (Klein 2005; 

Navigant Consulting 2006).  

Water is a significant energy demand. As the challenge of managing water and 

1 Adapted, with permission, from Robert B. Sowby, “Energy management in the water 
sector: A major sustainability opportunity,” 1st International Electronic Conference on 
Water Sciences, Nov. 15–29, 2016. CC-BY 4.0 
(https://creativecommons.org/licenses/by/4.0/). 
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energy resources continues to grow, energy efficiency in the water sector is a ripe 

sustainability opportunity.  

 
A.2 Background 

Historically, water suppliers have focused on providing reliable, high-quality 

water without necessarily considering energy requirements. Many have viewed a water 

system’s energy footprint as fixed; several technical, financial, social, and political 

obstacles have dissuaded water utilities from pursuing energy efficiency (Barry 2007). 

Now, with increasing population, stricter water-quality standards, and rising energy costs, 

energy efficiency in the water sector is emerging as an optimal solution.  

Indeed, “planning by drinking and wastewater utilities is increasingly considering 

issues of energy use,” mostly for financial reasons (Tidwell et al. 2014). According to the 

U.S. Environmental Protection Agency (EPA), energy for water and wastewater services 

is the largest single cost for municipal governments and private utilities, accounting for 

over 40% of operating expenses; for small cities, the cost can exceed 80% (EPA 2008). 

The World Bank likewise acknowledged that “improving energy efficiency is at the core 

of measures to reduce operational cost at water and wastewater utilities” (Liu et al. 2012).  

Looking beyond cost savings, the Department of Energy identified the 

optimization of water management, treatment, and distribution systems as one of its six 

strategic pillars in the water–energy nexus (DOE 2014). Water in the West concluded that 

“the energy deployed in water treatment and distribution is a principal target for reducing 

the embedded energy in the nation’s water supplies” (Water in the West 2013). The EPA 

realized that “improved energy efficiency … will help ensure the long-term sustainability 

of our nation’s water and wastewater infrastructure” (EPA 2008).  
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A.3 Energy Management as a Solution 

Efficiency is the most immediate, affordable, and environmentally beneficial 

solution to resource shortages. For power providers, energy management is a least-cost 

resource; its levelized cost is two to three times less than conventional energy generation 

(Hoffman et al. 2015; Milina 2014). Though power providers are aware of this difference 

and have targeted residential and commercial energy efficiency, potential savings in the 

water sector have been largely overlooked until recently. For water utilities, energy 

efficiency offers reduces their operation costs, shrinks their energy footprints, and 

improves public acceptance.  

A.4 Theoretical Savings 

Potential and theoretical energy efficiency savings for water utilities have been 

studied extensively, and most estimates indicate that savings of 10%–30% are possible 

through combinations of operational (no-cost) and capital measures. An EPA Region 9 

pilot study found an average of 17% energy savings potential and 26% cost savings 

potential, regardless of a utility’s size (Horne et al. 2014); a Massachusetts pilot study 

identified an average 33% potential savings at 14 water facilities (MassDEP 2016). 

According to the EPA, water facilities can achieve up to 30% percent reduction in energy 

use through energy efficiency upgrades and operational measures (EPA 2013). The 

Alliance to Save Energy claimed that 25% savings are possible in most water systems 

worldwide (Alliance to Save Energy 2016). The World Bank found that 10%–30% 

energy savings are common, with relatively short payback periods of one to five years 

(Liu et al. 2012). The U.S. Department of Energy (DOE) observed that “energy usage in 

delivering water services represents a nontrivial portion of U.S. electricity consumption 
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and may present significant opportunities for both efficiency and renewable generation” 

(DOE 2014).  

 
A.5 Actual Savings  

Beyond theory, significant energy savings have been achieved throughout the 

United States as water utilities and engineers translate theory into action. See Table A.1.  

In Utah, Jordan Valley Water saved 3.9 million kilowatt-hours (kWh) with 

operational changes (UDEQ 2015). North Salt Lake’s water system saved 32% through 

no-cost operational changes and Spanish Fork’s water system saved 29% after a capital 

project (Hansen, Allen & Luce, unpublished data). Logan, Utah, reduced its water 

system’s energy use by 32% and also observed a 17% decrease in water use and a 40% 

decrease in mainline breaks, demonstrating that energy efficiency has a synergistic effect 

that can support rather than oppose improvements in other areas (Jones et al. 2015). A 

large pump station of Nashville’s Metro Water Services used 30% less energy after an 

efficiency upgrade (Yarosz and Ashford 2015). Equipment upgrades and operational 

changes saved significant energy at several Arizona water utilities (Mundt and Dodenhoff 

2015). Energy efficiency in wastewater treatment, though not discussed here, is likewise 

effective. These cases show that energy savings are not only possible but also catalyze 

other improvements. Several best practices and resources to help water utilities save 

energy are available (EPA 2008; DOE 2014; Martin and Ries 2014; UDDW 2014; Jones 

and Sowby 2014; NYSERDA 2010; Moran and Barron 2009; DEC 2016). 
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Table A.1 

Water System Energy Efficiency Results 

Water Utility Location 
Annual Energy 

Savings Source 

City of Yuma Yuma, Ariz., USA  6,500,000 kWh Mundt and 
Dodenhoff 2015 

City of Flagstaff Flagstaff, Ariz., 
USA  

5,800,000 kWh Mundt and 
Dodenhoff 2015 

Jordan Valley 
Water Conservancy 
District  

West Jordan, Utah, 
USA  

3,900,000 kWh 
(10%)  

UDEQ 2015 

Dublin San Ramon 
Services District  

San Francisco, 
Calif., USA  

2,232,000 kWh EPA 2013 

City of North Salt 
Lake  

North Salt Lake, 
Utah, USA  

1,800,000 kWh 
(32%)  

Hansen, Allen & 
Luce, unpublished 
data  

City of Holbrook Holbrook, Ariz., 
USA  

1,750,000 kWh Mundt and 
Dodenhoff 2015 

Spanish Fork City  Spanish Fork, Utah, 
USA 

1,100,000 kWh 
(29%)  

Hansen, Allen & 
Luce, unpublished 
data  

Logan City Water  Logan, Utah, USA  900,000 kWh 
(32%) 

Jones et al. 2015 

Carefree Water 
Company 

Carefree, Ariz., 
USA  

425,000 kWh Mundt and 
Dodenhoff 2015 

Metro Water 
Services  

Nashville, Tenn., 
USA  

30% (facility) Yarosz and Ashford 
2015 
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A.6 Discussion 

To date, most of the literature and practice has focused on equipment energy 

efficiency at water facilities. While those advances are welcome, there many 

opportunities beyond the facility. A typical water system is a collection of water sources, 

treatment plants, pump stations, storage tanks, and other facilities that function not as 

discrete elements but as an interdependent system. Many potential water delivery paths 

exist, each with different energy requirements. The underlying assumption in the value of 

facility-specific equipment upgrades is that the facility lies along the most energy-

efficient water delivery path. This is not always true, since in many cases there is a better 

way to deliver water by thinking “outside the box”—that is, thinking outside the 

facility—on a system level. For example, Jordan Valley Water saved energy by 

prioritizing its most efficient water sources, and North Salt Lake saved energy by 

adjusting pressure-reducing valves to keep water in the intended pressure zone without 

excessive pumping. Rather than undertake capital projects to upgrade certain facilities, 

both water utilities found a more efficient water delivery path that leverages their existing 

efficient facilities and avoids inefficient ones. The practice of water system optimization 

considers such system-wide possibilities and aligns energy efficiency with water quality 

and level of service, the three main constrains of public water supply (Jones and Sowby 

2014). 

The next level of optimization is thinking outside the system—forging mutually 

beneficial partnerships among neighboring water suppliers to give and take water in ways 

that lower the overall energy requirements. Several water utilities in the Salt Lake Valley 

area are negotiating such agreements, which may be the first of their kind.  
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A.7 Conclusions  

Energy efficiency in the water sector is an untapped sustainability opportunity. 

Research and case studies demonstrate that energy reductions of 10% to 30% are typical 

for water utilities that pursue efficiency. Such solutions are cost-effective, prompt, and 

synergistic. 
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APPENDIX B 

ENERGY INTENSITY SURVEY RESULTS1 

Table B.1 lists the results of the primary survey carried out from 2015 to 2017 to 

collect water system energy intensity data and related information.  

1 Sowby, R. B., and Burian, S. J. (2017). “Energy Intensity Data for Public Water Supply 
in the United States (v1.0.0)” [dataset]. Zenodo. http://doi.org/10.5281/zenodo.1048275. 
CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/). 
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APPENDIX C 

COMPARISON OF ENERGY FOOTPRINTS IN 

PUBLICLY AND PRIVATELY OWNED 

WATER UTILITIES 

C.1 Introduction 

One point of interest in utilities policy and management research is the 

comparison of efficiency or performance between public and private utilities, particularly 

in the water industry. In the United States, most water suppliers are publicly owned (e.g., 

by a municipal government), while private water utilities (e.g., those owned and/or 

operated by a private company) serve about one quarter of the population (EPA 2017a; 

NAWC n.d.). 

In the economic sense, an organization’s efficiency is determined by the amount 

of output produced by a given level of input (Renzetti and Dupont 2003). Economic 

theory predicts that private ownership will yield greater efficiency than public ownership 

(Renzetti and Dupont 2003; Megginson and Netter 2001; Brubaker 1998; Millward 

1982). These claims assume that private utilities are better managed, have more advanced 

technology, and can access more capital. Further, a private utility’s for-profit mission 

would motivate measures to reduce costs and improve efficiency (Romano and Guerrini 

2014). However, no conclusive empirical evidence shows that private water utilities are 

more efficient than public ones (Peda et al. 2013; Kallis et al. 2010; Renzetti and Dupont 
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2003; Seppälä et al. 2001; Lobina et al. 1999), while some evidence suggests just the 

opposite (Bhattacharyya et al. 1994; Pescatrice and Trapani 1980).  

The quantity of resources water utilities consume directly impacts the efficiency 

of these organizations and the critical services they provide. Water utilities’ consumption 

of one resource in particular has not been well quantified until recently: energy. Water 

utilities require energy to extract, treat, pump, and deliver water to end users, 

transforming natural waters that would otherwise be unsuitable for human consumption 

into a reliable, high-quality product consumed by every person every day. Water utilities’ 

energy footprints carry financial, environmental, and social impacts that need to be 

understood and managed sustainably (Sowby and Burian 2017a). 

Among the ongoing discussions about the benefits and drawbacks of privatization 

in the water industry, the question then arises as to whether there is any difference in 

energy use between public and private water utilities. If the same theories and 

assumptions that predict greater efficiency in private enterprises apply to their energy 

use, one would expect private water utilities to have smaller energy footprints than their 

public counterparts. Further, with energy being one of the largest operational expenses in 

water supply (EPA 2017b), profit-driven private water utilities might naturally seek cost 

savings through strategic energy management and therefore require less energy than 

comparable public ones. This study compares energy intensities of both types of water 

utilities to determine if a statistically significant difference exists. 

C.2 Method 

Data for this research originated in a new primary survey of 109 U.S. water 

utilities by Sowby and Burian (2017a, 2017b). While water usage and financial data are 
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readily available, water utilities generally do not report or publish their energy use. This 

information is difficult to find, especially for large numbers of water utilities. This 

longstanding data gap is what motivated Sowby and Burian’s (2017) primary survey, 

which appears to be the largest available dataset on this subject. The data include annual 

energy intensities, or energy footprints, defined as the ratio of energy input to water 

deliveries (revenue water only) on an annual basis. (Water deliveries were used instead of 

total production because using all water in the denominator, including losses, would 

reduce the energy intensity unfairly, e.g., in two otherwise identical systems, the one with 

more water loss would have a lower energy intensity, which is inaccurate. Only the 

revenue water should be counted as the utility’s “product.”) 

Energy intensity, being a ratio of inputs to outputs, is like the reciprocal of the 

efficiency metric described earlier. It describes how much energy is required to deliver a 

unit of water to a certain place at a certain time (Wilkinson 2000), and is expressed here 

in units of kilowatt-hours per million gallons of water delivered (kWh/MG). Normalizing 

by water volume eliminates all effects of water demand and enables comparison solely in 

terms of energy. The survey results range from 250 to 11,500 kWh/MG with an average 

of 2,510 kWh/MG and a weighted average of 1,809 kWh/MG when weighted by water 

volume. While not yet fully understood, the range of values is attributed to local 

variations in utility size, water availability, topography, climate, and operational 

practices. 

In this analysis, complete control over the water system’s operation (and therefore 

its energy use) was deemed important for comparing energy intensities by ownership 

type. Of the 109 systems, 10 were excluded from this analysis because they relied on 
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water imported from other water utilities and were therefore not responsible for a portion 

of their energy footprint. Of the remaining 99 water utilities with total operational 

control, 79 were publicly owned and 20 were privately owned. Both groups contain large 

and small water systems. 

The relationship between ownership type and energy intensity was tested through 

an ordinary least squares (OLS) regression. One potentially complicating factor was 

acknowledged to be the water utility’s size, since larger water systems tend to have lower 

energy intensities and an economy of scale (Sowby and Burian 2017a). To control for 

size, energy intensity was regressed on both size (in terms of water delivery volume) and 

ownership type. The regression then expressed results for each variable individually. The 

null hypothesis was that ownership type is not related to energy intensity; the alternative 

hypothesis was that it is. A 95% confidence level was selected (significance level α = 

0.05). If the test statistic’s probability, p, for ownership type was below 0.05, the null 

hypothesis would be rejected and the alternative hypothesis accepted. 

C.3 Results 

Figure C.1 shows statistics for the two groups and Table C.1 shows the regression 

results. The average energy intensity of private water utilities (1,877 kWh/MG) is less 

than that of public water utilities (2,365 kWh/MG) and the regression model indicates a 

negative coefficient for private ownership. The range of energy intensities is also 

narrower than that of public water utilities. However, the difference is not statistically 

significant. The regression model yielded a result of p = 0.1427 for ownership type, 

meaning that the null hypothesis cannot be rejected. The difference in energy intensities  
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Figure C.1 Energy Intensities of Public and Private Water Utilities 

Table C.1 

Regression Model Results 

Coefficient Std. Error t p 
Intercept 2,555 183.4 13.93 0.0000 
Indicator of private ownership 
(1 if private, 0 otherwise) 

−561.1 379.6 −1.478 0.1427 

Size (million gallons of water 
delivered) 

−0.009128 0.003296 −2.769 0.006749 

between public and private water utilities cannot be conclusively attributed to their 

ownership structure. 

C.4 Discussion 

The consensus from the literature is that private water utilities are not necessarily 

more efficient, in the economic sense, than public ones. This work’s finding, namely that 

the energy intensities of public and private water utilities do not differ with any statistical 
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significance, supports the consensus in the energetic sense. 

Further, this means that neither public nor private water utilities enjoy any 

inherent energy performance advantage by virtue of their ownership. The ownership type 

alone, therefore, should not excuse a water utility from being subject to, or dissuade them 

from adopting, policies concerning its energy use or from implementing energy 

management practices. Both implications are discussed below. 

First, since neither has the upper hand, policies concerning energy use in the 

water industry should apply equally to public and private water utilities. Considerable 

research has recommended such policies for the integrated management of water and 

energy resources (Bazilian et al. 2008; Scott et al. 2011; Hellegers et al. 2008). While no 

broad policies on water utility energy management have been adopted in the United 

States, the finding suggests that proposed and future policies, especially by state and 

federal regulators, should address both public and private water utilities. 

Second, both public and private water utilities have opportunities to reduce their 

energy footprints through deliberate energy management. Regardless of size, location, 

energy intensity, or ownership, most water utilities can decrease their energy use by 10% 

to 30% through cost-effective actions, according to estimates by the U.S. Environmental 

Protection Agency (EPA 2017b; Horne et al. 2014; EPA 2013; EPA 2008), the World 

Bank (Liu et al. 2012), and the Alliance to Save Energy (2016). In recent years many 

water utilities, both public and private, have undertaken focused energy management 

programs and successfully reduced their energy use by these same amounts while still 

providing adequate hydraulic performance and water quality (Sowby et al. 2017; Sowby 

2016; Jones et al. 2015; Jones and Sowby 2014). With scarcer water resources and 
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stricter water quality standards, energy use in the water industry is expected to increase, 

making energy management a higher priority for water suppliers (EPA 2008). Both 

public and private water utilities stand to benefit from efforts to reduce their energy 

footprints and operate more sustainably. 

As the motivation and movement for water utilities to proactively manage energy 

use continues to swell, public and private ones may respond in different ways, so this 

analysis should be revisited when additional data become available. Further, more water 

utilities are adopting their own energy management policies or plans, and when a 

sufficient sample exists, the effect of these voluntary policies on energy intensity should 

be analyzed.  

C.5 Conclusion 

This study compared the energy footprints of public and private water utilities and 

found no statistically significant difference. This finding echoes that of other efficiency 

comparisons in the literature and contributes to the ongoing discussion about the value of 

privatization in general and its effect on energy use in the water industry in particular. 

Since no defensible difference in energy intensity was found, policies concerning energy 

management should cover public and private water utilities alike and both should pursue 

energy management practices to operate more sustainably.  
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APPENDIX D 

SUPPLEMENTAL MATERIAL TO CHAPTER 4 

D.1 Energy Intensity as a Conservative General Property 

The idea that enables in-model simulation of energy intensity rests on two 

assumptions: 1) that energy intensity is a property concentration of energy per volume, 

analogous to a chemical concentration of mass per volume; and 2) that energy intensity is 

conservative, with no internal growth or decay. These are discussed below. 

First, in chemistry, a mass concentration is the mass of a constituent, m, divided 

by the volume of the mixture (constituent plus water), V: 

𝐶𝐶 =
𝑚𝑚
𝑉𝑉

 (D.1) 

In water resources, chemical concentrations are often expressed in milligrams per liter 

(mg/L). Keeping volume in the denominator, one can express nonmass quantities as 

“property” concentrations: kilowatt-hours per million gallons, for example, which is the 

energy intensity described earlier: 

𝑌𝑌 =
𝐸𝐸
𝑉𝑉

 (D.2) 

It behaves like a physical concentration in that it travels with the water throughout the 

system. 

There is some precedent for this concept. Lansey and Boulos (2005) generalized 

the law of conservation of mass to develop a law of “conservation of a general property” 
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to describe the behavior of nonmass fluid properties. Specifically, they state that the 

conservation of a general property B is 

𝐵̇𝐵𝑖𝑖𝑖𝑖 − 𝐵̇𝐵𝑜𝑜𝑜𝑜𝑜𝑜 +
𝑑𝑑𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝐵𝐵𝐶𝐶𝐶𝐶
𝑑𝑑𝑑𝑑

 (D.3)

where 𝐵̇𝐵𝑖𝑖𝑖𝑖 and 𝐵̇𝐵𝑜𝑜𝑜𝑜𝑜𝑜 are the rates of the property entering and leaving a control volume, 

respectively, and (𝑑𝑑𝐵𝐵𝐶𝐶𝐶𝐶)/𝑑𝑑𝑑𝑑 is the rate of change of B in the control volume. So far, 

these terms are analogous to conservation of mass. The remaining term, (𝑑𝑑𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠)/𝑑𝑑𝑑𝑑, is 

the addition of the property to the control volume by means external to the fluid (i.e., by 

the system). In conservation of mass this term is zero, but for other properties it may be 

nonzero, as when the property is added or removed without changing the fluid mass. 

While not necessarily addressing energy intensity, Lansey and Boulos (2005) suggested 

that this describes, among other phenomena, a pot of water heated on a stove—energy 

added to a closed fluid system.  

Second, having shown that energy intensity may be treated like a chemical 

concentration in a water distribution system, its transport and fate must be further 

characterized. Clark (2012), AWWA (2012), and Rossman (2000) state that the change in 

concentration in a pipe by advection is given by the following differential equation:  

𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝜕𝜕

= −𝑢𝑢𝑖𝑖
𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝜕𝜕

+ 𝑟𝑟(𝐶𝐶𝑖𝑖) (D.4)

where Ci is the mass concentration (mass per volume) in pipe i at distance x and time t, ui 

is the flow velocity (length per time) in pipe i, and r is the reaction rate (mass per volume 

per time) within the pipe as a function of concentration. Substituting energy intensity for 

mass concentration the equation becomes 
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 𝜕𝜕𝑌𝑌𝑖𝑖
𝜕𝜕𝜕𝜕

= −𝑢𝑢𝑖𝑖
𝜕𝜕𝑌𝑌𝑖𝑖
𝜕𝜕𝜕𝜕

+ 𝑟𝑟(𝑌𝑌𝑖𝑖) (D.5) 

where Yi is the energy intensity (energy per volume) in pipe i at distance x and time t and 

other variables are as described above. Rossman (2000) further defines the reaction rate 

with n-th order kinetics:  

 𝑟𝑟(𝑌𝑌𝑖𝑖) = 𝐾𝐾𝑏𝑏𝑌𝑌𝑖𝑖𝑛𝑛 (D.6) 

where Kb is the bulk-flow reaction rate coefficient and n is the reaction order (0, 1, 2, 

etc.). Unlike a chemical, energy intensity has no physical presence in the pipe and cannot 

“react” with anything; it cannot be added or removed internally, so the term r(Yi) is 

always zero: 

 𝑟𝑟(𝑌𝑌𝑖𝑖) = 𝐾𝐾𝑏𝑏𝑌𝑌𝑖𝑖𝑛𝑛 = 0 (D.7) 

One of the factors must be zero in order to make the product zero. Since Yi is not always 

zero and the exponent n is at least zero, Kb must be zero: 

 𝐾𝐾𝑏𝑏 = 0 (D.8) 

Rossman (2000) states that Kb is zero when there is no reaction; that is, when the 

constituent is conservative. Energy intensity, therefore, is analogous to a conservative 

constituent. 

With the reaction rate r(Yi) being zero, the remaining terms are then 

 𝜕𝜕𝑌𝑌𝑖𝑖
𝜕𝜕𝜕𝜕

= −𝑢𝑢𝑖𝑖
𝜕𝜕𝑌𝑌𝑖𝑖
𝜕𝜕𝜕𝜕

 (D.9) 

This equation describes that the rate at which energy intensity changes within the pipe 

equals the difference in energy flow into and out of the pipe. The modeler must specify 

boundary conditions (Yi at x = 0 for all times) and initial conditions (Yi at t = 0 for all 

locations). The hydraulic model will compute the flow velocity ui in each pipe at each 
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time step. 

While not a physical concentration of mass per volume, energy intensity is a 

property concentration of energy per volume. Further, energy intensity is conservative; it 

is a fluid property that does not decay or grow by any internal reaction. It may be added 

externally, as by a pumping facility, but it is never removed from the system. With this 

perspective, the modeling of energy intensity within a water distribution system may 

follow the same principles and techniques as water quality modeling in extended-period 

simulations described by others (Lansey and Boulos 2005; Clark 2012). 

For example, the nodal mixing of energy intensities could be modeled as 

𝑌𝑌𝑗𝑗 =
∑ 𝑄𝑄𝑖𝑖𝑌𝑌𝑖𝑖 + 𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖∈𝐼𝐼𝑁𝑁𝑗𝑗

∑ 𝑄𝑄𝑖𝑖𝑖𝑖∈𝑂𝑂𝑂𝑂𝑇𝑇𝑗𝑗
(D.10) 

where Yj is the resulting energy intensity at node j, INj is the set of pipes entering the 

node, OUTj is the set of pipes leaving the node, Qi is the flow rate entering the node from 

pipe I, Yi is the energy intensity of the water entering the node from pipe I, and Ysys is the 

energy intensity added by the system at node j (as by a pump). This equation follows the 

same form as mixing of any water quality constituent and is performed for each node in 

the network (Haestad Methods et al. 2003; Clark 2012). In the absence of any external 

addition, the equation degrades to 

𝐵𝐵𝑗𝑗 =
∑ 𝑄𝑄𝑖𝑖𝐵𝐵𝑖𝑖𝑖𝑖∈𝐼𝐼𝑁𝑁𝑗𝑗

∑ 𝑄𝑄𝑖𝑖𝑖𝑖∈𝑂𝑂𝑂𝑂𝑇𝑇𝑗𝑗
(D.11) 

which states that the resulting energy intensity at a node is equivalent to the flow-

weighted average of the incoming energy intensities. Similar equations can be derived for 

tanks and pipes.  
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D.2 Pump Equation and Energy Intensity 

Modifying the pump equation leads to an expression for energy intensity in terms 

of hydraulic head and overall efficiency. This is useful when data needed to compute an 

element’s observed energy intensity are not available and the energy intensity must be 

estimated.  

The pump equation is 

𝑃𝑃 =
𝛾𝛾𝛾𝛾ℎ
𝜂𝜂

(D.12) 

where, in any consistent set of units, P is the power applied to the fluid, γ is the fluid 

density, Q is the mass flow rate, h is the total dynamic head, and η is the pump efficiency. 

Multiplying by time, t, the equation becomes 

𝑃𝑃𝑃𝑃 =
𝛾𝛾𝛾𝛾ℎ
𝜂𝜂

𝑡𝑡 (D.13) 

Since the product of power and time is energy and the product of flow and time is 

volume, this becomes 

𝐸𝐸 =
𝛾𝛾𝛾𝛾ℎ
𝜂𝜂

(D.14) 

where E is the energy applied to the fluid and V is the fluid volume. Dividing by volume, 

the expression becomes 

𝐸𝐸
𝑉𝑉

=
𝛾𝛾ℎ
𝜂𝜂

(D.15) 

Energy intensity, as defined earlier, is the ratio of energy to water volume, which is the 

left-hand side of the above equation. When energy intensity (Y) replaces this term, the 

equation becomes 



147 

𝑌𝑌 =
𝛾𝛾ℎ
𝜂𝜂

(D.16) 

For English units, a standard water density of 62.4 lb/ft3 and energy intensity units 

of kilowatt-hours per million gallons (kWh/MG) are assumed. With some unit 

conversions the equation becomes 

𝑌𝑌 = �
�62.4 lb

ft3� ℎ

𝜂𝜂
� ��3.776 × 10−7

kWh
ft ∙ lb

� �133,680
ft3

MG
�� (D.17) 

𝑌𝑌 =
3.14ℎ
𝜂𝜂

(D.18) 

where Y is the energy intensity (kWh/MG) of the element, h is the total dynamic head (ft) 

which is applied to the water, and η is the overall efficiency (fraction) which is less than 

1. This expression means that for every foot of head in a perfectly efficient system, one

would expect an energy intensity of 3.14 kWh/MG. 

D.3 Typical Energy Intensities 

Table D.1 gives energy intensities for common water facilities. These may be 

used as approximations when actual data are not available. 

D.4 Examples of Energy Intensity Behavior 

To illustrate how energy intensity behaves as a conservative general property 

within a water distribution system, a few examples of commonly occurring 

configurations are presented in Figure D.1. In each case, all pipes are equal diameter and 

equal length and the given demands and energy intensities are arbitrary. Both model 

results and manual calculations are included, along with comments on the behavior of 

energy intensity in each configuration.  
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Table D.1 

Typical Energy Intensities for Common Water Facilities 

Facility Energy Intensity (kWh/MG) 
Well, 400 ft TDH1,2 1,680 
Well, 800 ft TDH1,2 3,350 
Raw surface water pump3 150 
Surface water treatment plant, 1 MGD3 675 
Surface water treatment plant, 100 MGD3 470 
Reverse osmosis plant (seawater)3 12,300 
Finished water pump3 1,000 
Booster pump, one pressure zone, 200 ft TDH1,2 840 
Notes: 
1. See Table 4.1
2. Assumes 75% wire-to-water pump efficiency
3. See Table 4-2 in EPRI (2013)
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D.5 Sensitivity Analysis 

Because of uncertainty associated with the many input parameters, sensitivity 

analysis is an important aspect of responsible use of computerized models (Hall et al. 

2009). This research relied on energy intensity results obtained from a particular model 

and was subjected to a sensitivity analysis to determine how the results respond to 

incremental changes in certain input parameters. 

This analysis examined the effects of six parameters: pipe diameter, pipe 

roughness (Hazen-Williams C factor), pipe length, water demand, pumping head, and 

source energy intensity on the energy intensity results, defined here as the energy 

intensity at simulation time 144 hours averaged across all nodes in the system. These 

input parameters are attributes of the most basic components of the system—pipes, 

nodes, and pumps—and encompass combinations of hydraulic, energetic, and geometric 

characteristics. Source energy intensity affects the energy intensity results directly; the 

other parameters influence the underlying network hydraulics and thereby change the 

path by which water is delivered and the corresponding energy intensity associated with 

the path. 

To quantify the effects, the value of each parameter was changed by positive and 

negative increments of 10% around its original value, up to 50% each way, while holding 

the other parameters constant. While certain values in the test may fall outside the 

reasonable range for a given parameter, Lenhart et al. (2002) showed that sensitive 

parameters can be identified independent of the chosen range. Further, since EPANET is 

a demand-driven model, each model run may produce unacceptable or infeasible 

hydraulic conditions (such as low or negative pressures), but these are ignored since the 
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purpose of the sensitivity analysis was to quantify each parameter’s effect on energy 

intensity results. While not as comprehensive as other approaches, this “one-at-a-time” 

approach is a finite-difference estimation of the dependent variable’s partial derivative 

with respect to each parameter and is well accepted in many fields (Lenhart 2002; Hamby 

1994) and has been applied specifically to hydraulic models of water distribution 

networks (Lee et al. 2017; Filion et al. 2004).  

 Figure D.2 shows the results. Of the parameters selected, source energy intensity 

is the most influential. Considered as a conservative general property, its effect on the 

resulting nodal energy intensity is exactly linear. Other parameters are much less 

influential at every increment, yielding relatively small effects even when changed by as 

much as 50%. This suggests that accurately determining source energy intensity is a 

critical step in this type of energy analysis for water distribution systems and is where 

data quality efforts should focus. 

 

 

Figure D.2 Sensitivity Analysis Results 
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